Regularity Extraction and Application in Dynamic Auditory Stimulus Sequences

2007 ◽  
Vol 19 (10) ◽  
pp. 1664-1677 ◽  
Author(s):  
Alexandra Bendixen ◽  
Urte Roeber ◽  
Erich Schröger

Traditional auditory oddball paradigms imply the brain's ability to encode regularities, but are not optimal for investigating the process of regularity establishment. In the present study, a dynamic experimental protocol was developed that simulates a more realistic auditory environment with changing regularities. The dynamic sequences were included in a distraction paradigm in order to study regularity extraction and application. Subjects discriminated the duration of sequentially presented tones. Without relevance to the task, tones repeated or changed in frequency according to a pattern unknown to the subject. When frequency repetitions were broken by a deviating tone, behavioral distraction (prolonged reaction time in the duration discrimination task) was elicited. Moreover, event-related brain potential components indicated deviance detection (mismatch negativity), involuntary attention switches (P3a), and attentional reorientation. These results suggest that regularities were extracted from the dynamic stimulation and were used to predict forthcoming stimuli. The effects were already observed with deviants occurring after as few as two presentations of a standard frequency, that is, violating a just emerging rule. Effects of regularity violation strengthened with the number of standard repetitions. Control stimuli comprising no regularity revealed that the observed effects were due to both improvements in standard processing (benefits of regularity establishment) and deteriorations in deviant processing (costs of regularity violation). Thus, regularities are exploited in two different ways: for an efficient processing of regularity-conforming events as well as for the detection of nonconforming, presumably important events. The present results underline the brain's flexibility in its adaptation to environmental demands.

Author(s):  
Fabrice B. R. Parmentier ◽  
Pilar Andrés

The presentation of auditory oddball stimuli (novels) among otherwise repeated sounds (standards) triggers a well-identified chain of electrophysiological responses: The detection of acoustic change (mismatch negativity), the involuntary orientation of attention to (P3a) and its reorientation from the novel. Behaviorally, novels reduce performance in an unrelated visual task (novelty distraction). Past studies of the cross-modal capture of attention by acoustic novelty have typically discarded from their analysis the data from the standard trials immediately following a novel, despite some evidence in mono-modal oddball tasks of distraction extending beyond the presentation of deviants/novels (postnovelty distraction). The present study measured novelty and postnovelty distraction and examined the hypothesis that both types of distraction may be underpinned by common frontally-related processes by comparing young and older adults. Our data establish that novels delayed responses not only on the current trial and but also on the subsequent standard trial. Both of these effects increased with age. We argue that both types of distraction relate to the reconfiguration of task-sets and discuss this contention in relation to recent electrophysiological studies.


2018 ◽  
Vol 52 (03) ◽  
pp. 126-133 ◽  
Author(s):  
Patrik Roser ◽  
Eva-Maria Pichler ◽  
Benedikt Habermeyer ◽  
Wolfram Kawohl ◽  
Georg Juckel

Abstract Introduction Cannabis use disorders (CUD) are highly prevalent among patients with schizophrenia (SCZ). Deficient mismatch negativity (MMN) generation is a characteristic finding in SCZ patients and cannabis users. This study therefore examined the effects of CUD on MMN generation in SCZ patients. Methods Twenty SCZ − CUD patients, 21 SCZ+CUD patients, and 20 healthy controls (HC) were included in this study. MMN to frequency and duration deviants was elicited within an auditory oddball paradigm and recorded by 32 channel EEG. Results As expected, SCZ − CUD patients showed reduced frontocentral MMN amplitudes to duration deviants compared to HC. Interestingly, SCZ+CUD patients demonstrated greater MMN amplitudes to duration deviants compared to SCZ − CUD patients at central electrodes with no differences compared to HC. Discussion These results demonstrate that comorbid cannabis use in SCZ patients might be associated with superior cognitive functioning. It can be assumed that the association between cannabis use and better cognitive performance may be due to a subgroup of cognitively less impaired SCZ patients characterized by lower genetic vulnerability for psychosis.


2000 ◽  
Vol 111 (9) ◽  
pp. 1553-1560 ◽  
Author(s):  
Toshinori Sasaki ◽  
Kenneth B Campbell ◽  
P Gordon Bazana ◽  
Robert M Stelmack

Author(s):  
Karin M. Bausenhart ◽  
Maria Dolores de la Rosa ◽  
Rolf Ulrich

Recent studies suggest that the accuracy of duration discrimination for visually presented intervals is strongly impaired by concurrently presented auditory intervals of different duration, but not vice versa. Because these studies rely mostly on accuracy measures, it remains unclear whether this impairment results from changes in perceived duration or rather from a decrease in perceptual sensitivity. We therefore assessed complete psychometric functions in a duration discrimination task to disentangle effects on perceived duration and sensitivity. Specifically, participants compared two empty intervals marked by either visual or auditory pulses. These pulses were either presented unimodally, or accompanied by task-irrelevant pulses in the respective other modality, which defined conflicting intervals of identical, shorter, or longer duration. Participants were instructed to base their temporal judgments solely on the task-relevant modality. Despite this instruction, perceived duration was clearly biased toward the duration of the intervals marked in the task-irrelevant modality. This was not only found for the discrimination of visual intervals, but also, to a lesser extent, for the discrimination of auditory intervals. Discrimination sensitivity, however, was similar between all multimodal conditions, and only improved compared to the presentation of unimodal visual intervals. In a second experiment, evidence for multisensory integration was even found when the task-irrelevant modality did not contain any duration information, thus excluding noncompliant attention allocation as a basis of our results. Our results thus suggest that audiovisual integration of temporally discrepant signals does not impair discrimination sensitivity but rather alters perceived duration, presumably by means of a temporal ventriloquism effect.


2021 ◽  
Author(s):  
Paula Ríos López ◽  
Andreas Widmann ◽  
Aurélie Bidet-Caulet ◽  
Nicole Wetzel

Everyday cognitive tasks are rarely performed in a quiet environment. Quite on the contrary, very diverse surrounding acoustic signals such as speech can involuntarily deviate our attention from the task at hand. Despite its tight relation to attentional processes, pupillometry remained a rather unexploited method to measure attention allocation towards irrelevant speech. In the present study, we registered changes in pupil diameter size to quantify the effect of meaningfulness of background speech upon performance in an attentional task. We recruited 41 native German speakers who had neither received formal instruction in French nor had extensive informal contact with this language. The focal task consisted of an auditory oddball task. Participants performed an animal sound duration discrimination task containing frequently repeated standard sounds and rarely presented deviant sounds while a story was read in German or (non-meaningful) French in the background. Our results revealed that, whereas effects of language meaningfulness on attention were not detectable at the behavioural level, participants’ pupil dilated more in response to the sounds of the auditory task when background speech was played in non-meaningful French compared to German, independent of sound type. This could suggest that semantic processing of the native language required attentional resources, which lead to fewer resources devoted to the processing of the sounds of the focal task. Our results highlight the potential of the pupil dilation response for the investigation of subtle cognitive processes that might not surface when only behaviour is measured.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 182
Author(s):  
Kestutis Gurevicius ◽  
Arto Lipponen ◽  
Rimante Minkeviciene ◽  
Heikki Tanila

An auditory oddball paradigm in humans generates a long-duration cortical negative potential, often referred to as mismatch negativity. Similar negativity has been documented in monkeys and cats, but it is controversial whether mismatch negativity also exists in awake rodents. To this end, we recorded cortical and hippocampal evoked responses in rats during alert immobility under a typical passive oddball paradigm that yields mismatch negativity in humans. The standard stimulus was a 9 kHz tone and the deviant either 7 or 11 kHz tone in the first condition. We found no evidence of a sustained potential shift when comparing evoked responses to standard and deviant stimuli. Instead, we found repetition-induced attenuation of the P60 component of the combined evoked response in the cortex, but not in the hippocampus. The attenuation extended over three days of recording and disappeared after 20 intervening days of rest. Reversal of the standard and deviant tones resulted is a robust enhancement of the N40 component not only in the cortex but also in the hippocampus. Responses to standard and deviant stimuli were affected similarly. Finally, we tested the effect of scopolamine in this paradigm. Scopolamine attenuated cortical N40 and P60 as well as hippocampal P60 components, but had no specific effect on the deviant response. We conclude that in an oddball paradigm the rat demonstrates repetition-induced attenuation of mid-latency responses, which resembles attenuation of the N1-component of human auditory evoked potential, but no mismatch negativity.


2021 ◽  
Vol 18 (3) ◽  
pp. 194-208
Author(s):  
F.M. Dahunsi ◽  
O. A. Somefun ◽  
A.A. Ponnle ◽  
K.B. Adedeji

In recent years, the electric grid has experienced increasing deployment, use, and integration of smart meters and energy monitors. These devices transmit big time-series load data representing consumed electrical energy for load monitoring. However, load monitoring presents reactive issues concerning efficient processing, transmission, and storage. To promote improved efficiency and sustainability of the smart grid, one approach to manage this challenge is applying data-compression techniques. The subject of compressing electrical energy data (EED) has received quite an active interest in the past decade to date. However, a quick grasp of the range of appropriate compression techniques remains somewhat a bottleneck to researchers and developers starting in this domain. In this context, this paper reviews the compression techniques and methods (lossy and lossless) adopted for load  monitoring. Selected top-performing compression techniques metrics were discussed, such as compression efficiency, low reconstruction error, and encoding-decoding speed. Additionally reviewed is the relation between electrical energy, data, and sound compression. This review will motivate further interest in developing standard codecs for the compression of electrical energy data that matches that of other domains.


Sign in / Sign up

Export Citation Format

Share Document