scholarly journals Common and Unique Neural Activations in Autobiographical, Episodic, and Semantic Retrieval

2007 ◽  
Vol 19 (9) ◽  
pp. 1520-1534 ◽  
Author(s):  
Hana Burianova ◽  
Cheryl L. Grady

This study sought to explore the neural correlates that underlie autobiographical, episodic, and semantic memory. Autobiographical memory was defined as the conscious recollection of personally relevant events, episodic memory as the recall of stimuli presented in the laboratory, and semantic memory as the retrieval of factual information and general knowledge about the world. Our objective was to delineate common neural activations, reflecting a functional overlap, and unique neural activations, reflecting functional dissociation of these memory processes. We conducted an event-related functional magnetic resonance imaging study in which we utilized the same pictorial stimuli but manipulated retrieval demands to extract autobiographical, episodic, or semantic memories. The results show a functional overlap of the three types of memory retrieval in the inferior frontal gyrus, the middle frontal gyrus, the caudate nucleus, the thalamus, and the lingual gyrus. All memory conditions yielded activation of the left medial-temporal lobe; however, we found a functional dissociation within this region. The anterior and superior areas were active in episodic and semantic retrieval, whereas more posterior and inferior areas were active in autobiographical retrieval. Unique activations for each memory type were also delineated, including medial frontal increases for autobiographical, right middle frontal increases for episodic, and right inferior temporal increases for semantic retrieval. These findings suggest a common neural network underlying all declarative memory retrieval, as well as unique neural contributions reflecting the specific properties of retrieved memories.


2008 ◽  
Vol 20 (6) ◽  
pp. 965-976 ◽  
Author(s):  
Anna Abraham ◽  
D. Yves von Cramon ◽  
Ricarda I. Schubotz

A considerable part of our lives is spent engaging in the entertaining worlds of fiction that are accessible through media such as books and television. Little is known, however, about how we are able to readily understand that fictional events are distinct from those occurring within our real world. The present functional imaging study explored the brain correlates underlying such abilities by having participants make judgments about the possibility of different scenarios involving either real or fictional characters being true, given the reality of our world. The processing of real and fictional scenarios activated a common set of regions including medial-temporal lobe structures. When the scenarios involved real people, brain regions associated with episodic memory retrieval and self-referential thinking, the anterior prefrontal cortex and the precuneus/posterior cingulate, were more active. In contrast, areas along the left lateral inferior frontal gyrus, associated with semantic memory retrieval, were implicated for scenarios with fictional characters. This implies that there is a fine distinction in the manner in which conceptual information concerning real persons in contrast to fictional characters is represented. In general terms, the findings suggest that fiction relative to reality tends to be represented in more factual terms, whereas our representations of reality relative to fiction are colored by personal subjectivity. What modulates our understanding of the relative difference between reality and fiction seems to be whether such character-type information is coded in self-relevant terms or not.



2020 ◽  
Author(s):  
Gina F. Humphreys ◽  
JeYoung Jung ◽  
Matthew A. Lambon Ralph

AbstractSeveral decades of neuropsychological and neuroimaging research have highlighted the importance of lateral parietal cortex (LPC) across a myriad of cognitive domains. Yet, despite the prominence of this region the underlying function of LPC remains unclear. Two domains that have placed particular emphasis on LPC involvement are semantic memory and episodic memory retrieval. From each domain, sophisticated models have been proposed as to the underlying function, as well as the more domain-general that LPC is engaged by any form of internally-directed cognition (episodic and semantic retrieval both being examples if this process). Here we directly address these alternatives using a combination of fMRI and DTI white-matter connectivity data. The results show that ventral LPC (angular gyrus) was positively engaged during episodic retrieval but disengaged during semantic memory retrieval. In addition, the level of activity negatively varied with task difficulty in the semantic task whereas episodic activation was independent of difficulty. In contrast, dorsal LPC (intraparietal sulcus) showed domain general activation that was positively correlated with task difficulty. In terms of structural connectivity, a dorsal-ventral and anterior-posterior gradient of connectivity was found to different processing networks (e.g., mid-angular gyrus (AG) connected with episodic retrieval). We propose a unifying model in which LPC as a whole might share a common underlying function (e.g., multimodal buffering) and variations across subregions arise due to differences in the underlying white matter connectivity.



2020 ◽  
Vol 14 ◽  
Author(s):  
Giorgia Committeri ◽  
Agustina Fragueiro ◽  
Maria Maddalena Campanile ◽  
Marco Lagatta ◽  
Ford Burles ◽  
...  

The medial temporal lobe supports both navigation and declarative memory. On this basis, a theory of phylogenetic continuity has been proposed according to which episodic and semantic memories have evolved from egocentric (e.g., path integration) and allocentric (e.g., map-based) navigation in the physical world, respectively. Here, we explored the behavioral significance of this neurophysiological model by investigating the relationship between the performance of healthy individuals on a path integration and an episodic memory task. We investigated the path integration performance through a proprioceptive Triangle Completion Task and assessed episodic memory through a picture recognition task. We evaluated the specificity of the association between performance in these two tasks by including in the study design a verbal semantic memory task. We also controlled for the effect of attention and working memory and tested the robustness of the results by including alternative versions of the path integration and semantic memory tasks. We found a significant positive correlation between the performance on the path integration the episodic, but not semantic, memory tasks. This pattern of correlation was not explained by general cognitive abilities and persisted also when considering a visual path integration task and a non-verbal semantic memory task. Importantly, a cross-validation analysis showed that participants' egocentric navigation abilities reliably predicted episodic memory performance. Altogether, our findings support the hypothesis of a phylogenetic continuity between egocentric navigation and episodic memory and pave the way for future research on the potential causal role of egocentric navigation on multiple forms of episodic memory.



2011 ◽  
Vol 23 (9) ◽  
pp. 2533-2543 ◽  
Author(s):  
Heekyeong Park ◽  
Michael D. Rugg

The neural correlates of the encoding of associations between pairs of words, pairs of pictures, and word–picture pairs were compared. The aims were to determine, first, whether the neural correlates of associative encoding vary according to study material and, second, whether encoding of across- versus within-material item pairs is associated with dissociable patterns of hippocampal and perirhinal activity, as predicted by the “domain dichotomy” hypothesis of medial temporal lobe function. While undergoing fMRI scanning, subjects (n = 24) were presented with the three classes of study pairs, judging which of the denoted objects fit into the other. Outside of the scanner, subjects then undertook an associative recognition task, discriminating between intact study pairs, rearranged pairs comprising items that had been presented on different study trials, and unstudied item pairs. The neural correlates of successful associative encoding—subsequent associative memory effects—were operationalized as the difference in activity between study pairs correctly judged intact versus pairs incorrectly judged rearranged on the subsequent memory test. Pair type–independent subsequent memory effects were evident in the left inferior frontal gyrus (IFG) and the hippocampus. Picture–picture pairs elicited material-selective effects in regions of fusiform cortex that were also activated to a greater extent on picture trials than on word trials, whereas word–word pairs elicited material-selective subsequent memory effects in left lateral temporal cortex. Contrary to the domain-dichotomy hypothesis, neither hippocampal nor perirhinal subsequent memory effects differed depending on whether they were elicited by within- versus across-material study pairs. It is proposed that the left IFG plays a domain-general role in associative encoding, that associative encoding can also be facilitated by enhanced processing in material-selective cortical regions, and that the hippocampus and perirhinal cortex contribute equally to the formation of inter-item associations, regardless of whether the items belong to the same or to different processing domains.



2008 ◽  
Vol 15 (9) ◽  
pp. 611-617 ◽  
Author(s):  
I. Tendolkar ◽  
J. Arnold ◽  
K. M. Petersson ◽  
S. Weis ◽  
A. Brockhaus-Dumke ◽  
...  


2018 ◽  
Vol 48 (4) ◽  
pp. 513-528 ◽  
Author(s):  
Katherine E. Eskine ◽  
Ashanti E. Anderson ◽  
Madeline Sullivan ◽  
Edward J. Golob

Listening to music can affect cognitive abilities and may impact creative cognition. This effect is believed to be caused by music’s impact on arousal and mood. However, this causal relationship has been understudied. Furthermore, the strength of semantic knowledge associations has also been linked to creativity and provides an alternative hypothesis for increases in creative cognition. The relationship between music, mood, semantic knowledge, and creative cognition is not well understood. The present study consisted of two experiments. The first examined the relationship between music listening and creative cognition, the second additionally sought to examine whether the effect of music on semantic memory and/or mood are mechanisms that promote creative cognition. In the first experiment, participants completed 15 items of the Remote Associates Test of Creativity after listening to hip-hop music, classical music, and babble. In addition to replicating the first experiment, the second also measured mood and semantic memory. In both experiments participants displayed greater creativity after listening to music. Semantic memory retrieval was enhanced after listening to music, but creative cognition and semantic memory were not significantly correlated with mood. The findings show parallel, positive effects on creative cognition, semantic retrieval, and mood when subjects listen to music.



2009 ◽  
Vol 21 (9) ◽  
pp. 1751-1765 ◽  
Author(s):  
Elizabeth F. Chua ◽  
Daniel L. Schacter ◽  
Reisa A. Sperling

Metamemory refers to knowledge and monitoring of one's own memory. Metamemory monitoring can be done prospectively with respect to subsequent memory retrieval or retrospectively with respect to previous memory retrieval. In this study, we used fMRI to compare neural activity during prospective feeling-of-knowing and retrospective confidence tasks in order to examine common and distinct mechanisms supporting multiple forms of metamemory monitoring. Both metamemory tasks, compared to non-metamemory tasks, were associated with greater activity in medial prefrontal, medial parietal, and lateral parietal regions, which have previously been implicated in internally directed cognition. Furthermore, compared to non-metamemory tasks, metamemory tasks were associated with less activity in occipital regions, and in lateral inferior frontal and dorsal medial prefrontal regions, which have previously shown involvement in visual processing and stimulus-oriented attention, respectively. Thus, neural activity related to metamemory is characterized by both a shift toward internally directed cognition and away from externally directed cognition. Several regions demonstrated differences in neural activity between feeling-of-knowing and confidence tasks, including fusiform, medial temporal lobe, and medial parietal regions; furthermore, these regions also showed interaction effects between task and the subjective metamemory rating, suggesting that they are sensitive to the information monitored in each particular task. These findings demonstrate both common and distinct neural mechanisms supporting metamemory processes and also serve to elucidate the functional roles of previously characterized brain networks.



2011 ◽  
Vol 23 (12) ◽  
pp. 4150-4163 ◽  
Author(s):  
Marie St-Laurent ◽  
Hervé Abdi ◽  
Hana Burianová ◽  
Cheryl L. Grady

We used fMRI to assess the neural correlates of autobiographical, semantic, and episodic memory retrieval in healthy young and older adults. Participants were tested with an event-related paradigm in which retrieval demand was the only factor varying between trials. A spatio-temporal partial least square analysis was conducted to identify the main patterns of activity characterizing the groups across conditions. We identified brain regions activated by all three memory conditions relative to a control condition. This pattern was expressed equally in both age groups and replicated previous findings obtained in a separate group of younger adults. We also identified regions whose activity differentiated among the different memory conditions. These patterns of differentiation were expressed less strongly in the older adults than in the young adults, a finding that was further confirmed by a barycentric discriminant analysis. This analysis showed an age-related dedifferentiation in autobiographical and episodic memory tasks but not in the semantic memory task or the control condition. These findings suggest that the activation of a common memory retrieval network is maintained with age, whereas the specific aspects of brain activity that differ with memory content are more vulnerable and less selectively engaged in older adults. Our results provide a potential neural mechanism for the well-known age differences in episodic/autobiographical memory, and preserved semantic memory, observed when older adults are compared with younger adults.



2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
David Luck ◽  
Marie-Eve Leclerc ◽  
Martin Lepage

Establishing associations between pieces of information is related to the medial temporal lobe (MTL). However, it remains unclear how emotions affect memory for associations and, consequently, MTL activity. Thus, this event-related fMRI study attempted to identify neural correlates of the influence of positive and negative emotions on associative memory. Twenty-five participants were instructed to memorize 90 pairs of standardized pictures during a scanned encoding phase. Each pair was composed of a scene and an unrelated object. Trials were neutral, positive, or negative as a function of the emotional valence of the scene. At the behavioral level, participants exhibited better memory retrieval for both emotional conditions relative to neutral trials. Within the right MTL, a functional dissociation was observed, with entorhinal activation elicited by emotional associations, posterior parahippocampal activation elicited by neutral associations, and hippocampal activation elicited by both emotional and neutral associations. In addition, emotional associations induced greater activation than neutral trials in the right amygdala. This fMRI study shows that emotions are associated with the performance improvement of associative memory, by enhancing activity in the right amygdala and the right entorhinal cortex. It also provides evidence for a rostrocaudal specialization within the MTL regarding the emotional valence of associations.



2003 ◽  
Vol 17 (6) ◽  
pp. 1296-1302 ◽  
Author(s):  
Dominique J.-F. De Quervain ◽  
Katharina Henke ◽  
Amanda Aerni ◽  
Valerie Treyer ◽  
James L. McGaugh ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document