scholarly journals Neural Correlates of Stimulus Reportability

2009 ◽  
Vol 21 (8) ◽  
pp. 1602-1610 ◽  
Author(s):  
Oliver J. Hulme ◽  
Karl F. Friston ◽  
Semir Zeki

Most experiments on the “neural correlates of consciousness” employ stimulus reportability as an operational definition of what is consciously perceived. The interpretation of such experiments therefore depends critically on understanding the neural basis of stimulus reportability. Using a high volume of fMRI data, we investigated the neural correlates of stimulus reportability using a partial report object detection paradigm. Subjects were presented with a random array of circularly arranged disc-stimuli and were cued, after variable delays (following stimulus offset), to report the presence or absence of a disc at the cued location, using variable motor actions. By uncoupling stimulus processing, decision, and motor response, we were able to use signal detection theory to deconstruct the neural basis of stimulus reportability. We show that retinotopically specific responses in the early visual cortex correlate with stimulus processing but not decision or report; a network of parietal/temporal regions correlates with decisions but not stimulus presence, whereas classical motor regions correlate with report. These findings provide a basic framework for understanding the neural basis of stimulus reportability without the theoretical burden of presupposing a relationship between reportability and consciousness.

2021 ◽  
Author(s):  
Ryan M. Barker ◽  
Marie St-Laurent ◽  
Bradley R. Buchsbaum

AbstractEpisodic recollections vary in fidelity, sharpness, and strength—qualities that can be examined using both introspective judgements of mental states and objective measures of brain activity. Subjective and objective measures are both valid ways of “reading out” the content of someone’s internal mnemonic states, each with different strengths and weaknesses. St-Laurent and colleagues (2015) investigated the neural correlates of memory vividness ratings and neural reactivation during memory recall and found considerable overlap, suggesting common neural basis underlying these different markers of successful recollection. Here we extended this work with a much more extensive examination in which we used meta-analytic methods to pool four neuroimaging datasets in order to compare and contrast the neural substrates of neural reactivation and vividness judgements. While reactivation and vividness judgements correlated positively with one another and were associated with common univariate activity in the dorsal attention network and anterior hippocampus, some differences were also observed. Vividness judgments were tied to stronger activation in the striatum and dorsal attention network, together with suppression of default mode network nodes, and we also observed a trend for reactivation to be more closely associated with early visual cortex activity. A mediation analysis found support for the hypothesis that neural reactivation is necessary for vivid recollection, with activity in the anterior hippocampus associated with greater reactivation. Our results suggest that neural reactivation and vividness judgements reflect common recollective processing but differ in the extent to which they engage effortful, attentional processing. Additionally, the similarity between reactivation and vividness appears to arise, partly, through hippocampal processing during recollection.


2021 ◽  
Author(s):  
Borja Rodriguez Herreros ◽  
Julia L Amengual ◽  
Jimena Lucrecia Vazquez-Anguiano ◽  
Silvio Ionta ◽  
Carlo Miniussi ◽  
...  

Converging evidence indicates that response inhibition may arise from the interaction of effortful proactive and reflexive reactive mechanisms. However, the distinction between the neural basis sustaining proactive and reactive inhibitory processes is still unclear. To identify reliable neural markers of proactive inhibition, we examined the behavioral and electrophysiological correlates elicited by manipulating the degree of inhibitory control in a task that involved the detection and amendment of errors. Restraining or encouraging the correction of errors did not affect the time course of the behavioral and neural correlates associated to reactive inhibition. We rather found that a bilateral and sustained decrease of corticomotor excitability was required for an effective proactive inhibitory control, whereas selective strategies were associated with defective response suppression. Our results provide behavioral and electrophysiological conclusive evidence of a comprehensive proactive inhibitory mechanism, with a distinctive underlying neural basis, governing the commission and amendment of errors. Together, these findings hint at a decisive role for changes in corticomotor excitability in determining whether an action will be successfully suppressed.


2020 ◽  
Vol 11 ◽  
Author(s):  
Monica Leslie ◽  
Daniel Halls ◽  
Jenni Leppanen ◽  
Felicity Sedgewick ◽  
Katherine Smith ◽  
...  

People with anorexia nervosa (AN) commonly exhibit social difficulties, which may be related to problems with understanding the perspectives of others, commonly known as Theory of Mind (ToM) processing. However, there is a dearth of literature investigating the neural basis of these differences in ToM and at what age they emerge. This study aimed to test for differences in the neural correlates of ToM processes in young women with AN, and young women weight-restored (WR) from AN, as compared to healthy control participants (HC). Based on previous findings in AN, we hypothesized that young women with current or prior AN, as compared to HCs, would exhibit a reduced neural response in the medial prefrontal cortex (mPFC), the inferior frontal gyrus, and the temporo-parietal junction (TPJ) whilst completing a ToM task. We recruited 73 young women with AN, 45 WR young women, and 70 young women without a history of AN to take part in the current study. Whilst undergoing a functional magnetic resonance imaging (fMRI) scan, participants completed the Frith-Happé task, which is a commonly used measure of ToM with demonstrated reliability and validity in adult populations. In this task, participants viewed the movements of triangles, which depicted either action movements, simple interactions, or complex social interactions. Viewing trials with more complex social interactions in the Frith-Happé task was associated with increased brain activation in regions including the right TPJ, the bilateral mPFC, the cerebellum, and the dorsolateral prefrontal cortex. There were no group differences in neural activation in response to the ToM contrast. Overall, these results suggest that the neural basis of spontaneous mentalizing is preserved in most young women with AN.


2011 ◽  
Vol 106 (5) ◽  
pp. 2273-2284 ◽  
Author(s):  
Elaine J. Anderson ◽  
Geraint Rees

A natural visual scene contains more information than the visual system has the capacity to simultaneously process, requiring specific items to be selected for detailed analysis at the expense of others. Such selection and inhibition are fundamental in guiding search behavior, but the neural basis of these mechanisms remains unclear. Abruptly appearing visual items can automatically capture attention, but once attention has been directed away from the salient event, return to that same location is slowed. In non-human primates, signals associated with attentional capture (AC) and subsequent inhibition of return (IOR) have been recorded from the superior colliculus (SC)—a structure known to play a pivotal role in reflexive spatial orienting. Here, we sought to establish whether similar signals could be recorded from the human SC, as well as early retinotopic cortical visual areas, where signals associated with AC and IOR have yet to be investigated with respect to oculomotor responses. Using an optimized oculomotor paradigm together with high-field, high-spatial resolution functional magnetic resonance imaging and high-speed eye tracking, we demonstrate that BOLD signal changes recorded from the human SC correlate strongly with our saccadic measures of AC and IOR. A qualitatively similar pattern of responses was found for V1, but only the inhibitory response associated with IOR persisted through V2 and V3. Although the SC plays a role in mediating these automatic attentional biasing signals, the source of these signals is likely to lie in higher cortical areas.


2017 ◽  
Vol 372 (1714) ◽  
pp. 20160103 ◽  
Author(s):  
Andrew R. Dykstra ◽  
Peter A. Cariani ◽  
Alexander Gutschalk

How and which aspects of neural activity give rise to subjective perceptual experience—i.e. conscious perception—is a fundamental question of neuroscience. To date, the vast majority of work concerning this question has come from vision, raising the issue of generalizability of prominent resulting theories. However, recent work has begun to shed light on the neural processes subserving conscious perception in other modalities, particularly audition. Here, we outline a roadmap for the future study of conscious auditory perception and its neural basis, paying particular attention to how conscious perception emerges (and of which elements or groups of elements) in complex auditory scenes. We begin by discussing the functional role of the auditory system, particularly as it pertains to conscious perception. Next, we ask: what are the phenomena that need to be explained by a theory of conscious auditory perception? After surveying the available literature for candidate neural correlates, we end by considering the implications that such results have for a general theory of conscious perception as well as prominent outstanding questions and what approaches/techniques can best be used to address them. This article is part of the themed issue ‘Auditory and visual scene analysis’.


2021 ◽  
Vol 21 (9) ◽  
pp. 2816
Author(s):  
Taissa K. Lytchenko ◽  
Nathan H. Heller ◽  
Sharif Saleki ◽  
Peter U. Tse ◽  
Gideon P. Caplovitz

Author(s):  
Stefan Koelsch

During listening, acoustic features of sounds are extracted in the auditory system (in the auditory brainstem, thalamus, and auditory cortex). To establish auditory percepts of melodies and rhythms (i.e., to establish auditory “Gestalten” and auditory objects), sound information is buffered and processed in the auditory sensory memory. Musical structure is then processed based on acoustical similarities and rhythmical organization. In addition, musical structure is processed according to (implicit) knowledge about musical regularities underlying scales, melodic and harmonic progressions, and so on. These structures are based on both local and (hierarchically organized) nonlocal dependencies. This chapter reviews neural correlates of these processes, with regard to both brain-electric responses to sounds, and the neuroanatomical architecture of music perception.


Author(s):  
Jorge Morales ◽  
Hakwan Lau

Our understanding of the neural basis of consciousness has substantially improved in the last few decades. New imaging and statistical techniques have been introduced, experiments have become more sophisticated, and several unsuccessful hypotheses have been quite conclusively ruled out. However, neuroscientists still do not entirely agree on the critical neural features required for sustaining perceptual conscious experiences in humans and other primates. This chapter discusses a selection of influential views of the neural correlates of consciousness and the predictions they make. By highlighting some neurobiological and computational modelling results, it will be argued that the currently available evidence favors a hierarchical processing architecture that confers a crucial, if subtle and specific, role to prefrontal cortex.


2020 ◽  
pp. 174702182097421
Author(s):  
Qin Jiang ◽  
Qi Wang ◽  
Hong Li

Intention is a typical mental state in the theory of mind. However, to date, there have been theoretical debates on the conceptual structure of intention. The neural and cognitive time course of intention reasoning remains unclear. The present event-related potential (ERP) study had two purposes: first, to investigate the neural correlates of intention reasoning based on a differentiated conceptual structure distinguishing desire and intention; second, to investigate the neural basis of intention reasoning for different agents. Thus, we compared the neural activity elicited by intention reasoning for self and for others when the intention matched or mismatched the desire of the agent. The results revealed that three ERP components distinguished among different types of intention reasoning. A negative-going ERP deflection with right frontal distribution between 400 and 500 ms might reflect the cognitive conflict involved in intention reasoning, a right frontal late positive component might be associated with the categorisation of agents, and a centro-parietal late slow wave might indicate the conceptual mental operations associated with decoupling mechanisms in intention processing. These findings implied the neural and cognitive time course of intention reasoning and provided neural evidence for the differentiated conception of intention.


2018 ◽  
Vol 30 (9) ◽  
pp. 1281-1297 ◽  
Author(s):  
Alexa Tompary ◽  
Naseem Al-Aidroos ◽  
Nicholas B. Turk-Browne

Top–down attention prioritizes the processing of goal-relevant information throughout visual cortex based on where that information is found in space and what it looks like. Whereas attentional goals often have both spatial and featural components, most research on the neural basis of attention has examined these components separately. Here we investigated how these attentional components are integrated by examining the attentional modulation of functional connectivity between visual areas with different selectivity. Specifically, we used fMRI to measure temporal correlations between spatially selective regions of early visual cortex and category-selective regions in ventral temporal cortex while participants performed a task that benefitted from both spatial and categorical attention. We found that categorical attention modulated the connectivity of category-selective areas, but only with retinotopic areas that coded for the spatially attended location. Similarly, spatial attention modulated the connectivity of retinotopic areas only with the areas coding for the attended category. This pattern of results suggests that attentional modulation of connectivity is driven both by spatial selection and featural biases. Combined with exploratory analyses of frontoparietal areas that track these changes in connectivity among visual areas, this study begins to shed light on how different components of attention are integrated in support of more complex behavioral goals.


Sign in / Sign up

Export Citation Format

Share Document