scholarly journals Syntactic Unification Operations Are Reflected in Oscillatory Dynamics during On-line Sentence Comprehension

2010 ◽  
Vol 22 (7) ◽  
pp. 1333-1347 ◽  
Author(s):  
Marcel Bastiaansen ◽  
Lilla Magyari ◽  
Peter Hagoort

There is growing evidence suggesting that synchronization changes in the oscillatory neuronal dynamics in the EEG or MEG reflect the transient coupling and uncoupling of functional networks related to different aspects of language comprehension. In this work, we examine how sentence-level syntactic unification operations are reflected in the oscillatory dynamics of the MEG. Participants read sentences that were either correct, contained a word category violation, or were constituted of random word sequences devoid of syntactic structure. A time–frequency analysis of MEG power changes revealed three types of effects. The first type of effect was related to the detection of a (word category) violation in a syntactically structured sentence, and was found in the alpha and gamma frequency bands. A second type of effect was maximally sensitive to the syntactic manipulations: A linear increase in beta power across the sentence was present for correct sentences, was disrupted upon the occurrence of a word category violation, and was absent in syntactically unstructured random word sequences. We therefore relate this effect to syntactic unification operations. Thirdly, we observed a linear increase in theta power across the sentence for all syntactically structured sentences. The effects are tentatively related to the building of a working memory trace of the linguistic input. In conclusion, the data seem to suggest that syntactic unification is reflected by neuronal synchronization in the lower-beta frequency band.

2015 ◽  
Vol 27 (11) ◽  
pp. 2095-2107 ◽  
Author(s):  
Marcel Bastiaansen ◽  
Peter Hagoort

During sentence level language comprehension, semantic and syntactic unification are functionally distinct operations. Nevertheless, both recruit roughly the same brain areas (spatially overlapping networks in the left frontotemporal cortex) and happen at the same time (in the first few hundred milliseconds after word onset). We tested the hypothesis that semantic and syntactic unification are segregated by means of neuronal synchronization of the functionally relevant networks in different frequency ranges: gamma (40 Hz and up) for semantic unification and lower beta (10–20 Hz) for syntactic unification. EEG power changes were quantified as participants read either correct sentences, syntactically correct though meaningless sentences (syntactic prose), or sentences that did not contain any syntactic structure (random word lists). Other sentences contained either a semantic anomaly or a syntactic violation at a critical word in the sentence. Larger EEG gamma-band power was observed for semantically coherent than for semantically anomalous sentences. Similarly, beta-band power was larger for syntactically correct sentences than for incorrect ones. These results confirm the existence of a functional dissociation in EEG oscillatory dynamics during sentence level language comprehension that is compatible with the notion of a frequency-based segregation of syntactic and semantic unification.


2008 ◽  
Vol 19 (7) ◽  
pp. 1493-1503 ◽  
Author(s):  
Tineke M. Snijders ◽  
Theo Vosse ◽  
Gerard Kempen ◽  
Jos J.A. Van Berkum ◽  
Karl Magnus Petersson ◽  
...  

2018 ◽  
Vol 30 (4) ◽  
pp. 594-602 ◽  
Author(s):  
Giovanni Mento ◽  
Duncan E. Astle ◽  
Gaia Scerif

Temporal orienting of attention operates by biasing the allocation of cognitive and motor resources in specific moments in time, resulting in the improved processing of information from expected compared with unexpected targets. Recent findings have shown that temporal orienting operates relatively early across development, suggesting that this attentional mechanism plays a core role for human cognition. However, the exact neurophysiological mechanisms allowing children to attune their attention over time are not well understood. In this study, we presented 8- to 12-year-old children with a temporal cueing task designed to test (1) whether anticipatory oscillatory dynamics predict children's behavioral performance on a trial-by-trial basis and (2) whether anticipatory oscillatory neural activity may be supported by cross-frequency phase–amplitude coupling as previously shown in adults. Crucially, we found that, similar to what has been reported in adults, children's ongoing beta rhythm was strongly coupled with their theta rhythm and that the strength of this coupling distinguished validly cued temporal intervals, relative to neutral cued trials. In addition, in long trials, there was an inverse correlation between oscillatory beta power and children's trial-by-trial reaction, consistent with oscillatory beta power reflecting better response preparation. These findings provide the first experimental evidence that temporal attention in children operates by exploiting oscillatory mechanism.


Author(s):  
Alexander M. Swiderski ◽  
Yina M. Quique ◽  
Michael Walsh Dickey ◽  
William D. Hula

Purpose This meta-analysis synthesizes published studies using “treatment of underlying forms” (TUF) for sentence-level deficits in people with aphasia (PWA). The study aims were to examine group-level evidence for TUF efficacy, to characterize the effects of treatment-related variables (sentence structural family and complexity; treatment dose) in relation to the Complexity Account of Treatment Efficacy (CATE) hypothesis, and to examine the effects of person-level variables (aphasia severity, sentence comprehension impairment, and time postonset of aphasia) on TUF response. Method Data from 13 single-subject, multiple-baseline TUF studies, including 46 PWA, were analyzed. Bayesian generalized linear mixed-effects interrupted time series models were used to assess the effect of treatment-related variables on probe accuracy during baseline and treatment. The moderating influence of person-level variables on TUF response was also investigated. Results The results provide group-level evidence for TUF efficacy demonstrating increased probe accuracy during treatment compared with baseline phases. Greater amounts of TUF were associated with larger increases in accuracy, with greater gains for treated than untreated sentences. The findings revealed generalization effects for sentences that were of the same family but less complex than treated sentences. Aphasia severity may moderate TUF response, with people with milder aphasia demonstrating greater gains compared with people with more severe aphasia. Sentence comprehension performance did not moderate TUF response. Greater time postonset of aphasia was associated with smaller improvements for treated sentences but not for untreated sentences. Conclusions Our results provide generalizable group-level evidence of TUF efficacy. Treatment and generalization responses were consistent with the CATE hypothesis. Model results also identified person-level moderators of TUF (aphasia severity, time postonset of aphasia) and preliminary estimates of the effects of varying amounts of TUF for treated and untreated sentences. Taken together, these findings add to the TUF evidence and may guide future TUF treatment–candidate selection. Supplemental Material https://doi.org/10.23641/asha.16828630


2006 ◽  
Vol 18 (4) ◽  
pp. 665-679 ◽  
Author(s):  
Colin Humphries ◽  
Jeffrey R. Binder ◽  
David A. Medler ◽  
Einat Liebenthal

In previous functional neuroimaging studies, left anterior temporal and temporal-parietal areas responded more strongly to sentences than to randomly ordered lists of words. The smaller response for word lists could be explained by either (1) less activation of syntactic processes due to the absence of syntactic structure in the random word lists or (2) less activation of semantic processes resulting from failure to combine the content words into a global meaning. To test these two explanations, we conducted a functional magnetic resonance imaging study in which word order and combinatorial word meaning were independently manipulated during auditory comprehension. Subjects heard six different stimuli: normal sentences, semantically incongruent sentences in which content words were randomly replaced with other content words, pseudoword sentences, and versions of these three sentence types in which word order was randomized to remove syntactic structure. Effects of syntactic structure (greater activation to sentences than to word lists) were observed in the left anterior superior temporal sulcus and left angular gyrus. Semantic effects (greater activation to semantically congruent stimuli than either incongruent or pseudoword stimuli) were seen in widespread, bilateral temporal lobe areas and the angular gyrus. Of the two regions that responded to syntactic structure, the angular gyrus showed a greater response to semantic structure, suggesting that reduced activation for word lists in this area is related to a disruption in semantic processing. The anterior temporal lobe, on the other hand, was relatively insensitive to manipulations of semantic structure, suggesting that syntactic information plays a greater role in driving activation in this area.


2013 ◽  
Vol 56 (2) ◽  
pp. 577-589 ◽  
Author(s):  
Laurence B. Leonard ◽  
Patricia Deevy ◽  
Marc E. Fey ◽  
Shelley L. Bredin-Oja

Purpose This study examined sentence comprehension in children with specific language impairment (SLI) in a manner designed to separate the contribution of cognitive capacity from the effects of syntactic structure. Method Nineteen children with SLI, 19 typically developing children matched for age (TD-A), and 19 younger typically developing children (TD-Y) matched according to sentence comprehension test scores responded to sentence comprehension items that varied in either length or their demands on cognitive capacity, based on the nature of the foils competing with the target picture. Results The TD-A children were accurate across all item types. The SLI and TD-Y groups were less accurate than the TD-A group on items with greater length and, especially, on items with the greatest demands on cognitive capacity. The types of errors were consistent with failure to retain details of the sentence apart from syntactic structure. Conclusions The difficulty in the more demanding conditions seemed attributable to interference. Specifically, the children with SLI and the TD-Y children appeared to have difficulty retaining details of the target sentence when the information reflected in the foils closely resembled the information in the target sentence.


2007 ◽  
Vol 19 (3) ◽  
pp. 386-400 ◽  
Author(s):  
Anna S. Hasting ◽  
Sonja A. Kotz ◽  
Angela D. Friederici

The present study investigated the automaticity of morphosyntactic processes and processes of syntactic structure building using event-related brain potentials. Two experiments were conducted, which contrasted the impact of local subject-verb agreement violations (Experiment 1) and word category violations (Experiment 2) on the mismatch negativity, an early event-related brain potential component reflecting automatic auditory change detection. The two violation types were realized in two-word utterances comparable with regard to acoustic parameters and structural complexity. The grammaticality of the utterances modulated the mismatch negativity response in both experiments, suggesting that both types of syntactic violations were detected automatically within 200 msec after the violation point. However, the topographical distribution of the grammaticality effect varied as a function of violation type, which indicates that the brain mechanisms underlying the processing of subject-verb agreement and word category information may be functionally distinct even at this earliest stage of syntactic analysis. The findings are discussed against the background of studies investigating syntax processing beyond the level of two-word utterances.


2016 ◽  
Vol 115 (4) ◽  
pp. 2224-2236 ◽  
Author(s):  
Yvonne M. Fonken ◽  
Jochem W. Rieger ◽  
Elinor Tzvi ◽  
Nathan E. Crone ◽  
Edward Chang ◽  
...  

Changes in the environment require rapid modification or inhibition of ongoing behavior. We used the stop-signal paradigm and intracranial recordings to investigate response preparation, inhibition, and monitoring of task-relevant information. Electrocorticographic data were recorded in eight patients with electrodes covering frontal, temporal, and parietal cortex, and time-frequency analysis was used to examine power differences in the beta (13–30 Hz) and high-gamma bands (60–180 Hz). Over motor cortex, beta power decreased, and high-gamma power increased during motor preparation for both go trials (Go) and unsuccessful stops (US). For successful stops (SS), beta increased, and high-gamma was reduced, indexing the cancellation of the prepared response. In the middle frontal gyrus (MFG), stop signals elicited a transient high-gamma increase. The MFG response occurred before the estimated stop-signal reaction time but did not distinguish between SS and US trials, likely signaling attention to the salient stop stimulus. A postresponse high-gamma increase in MFG was stronger for US compared with SS and absent in Go, supporting a role in behavior monitoring. These results provide evidence for differential contributions of frontal subregions to response inhibition, including motor preparation and inhibitory control in motor cortex and cognitive control and action evaluation in lateral prefrontal cortex.


Physiology ◽  
2017 ◽  
Vol 32 (1) ◽  
pp. 60-92 ◽  
Author(s):  
Michael J. Prerau ◽  
Ritchie E. Brown ◽  
Matt T. Bianchi ◽  
Jeffrey M. Ellenbogen ◽  
Patrick L. Purdon

During sleep, cortical and subcortical structures within the brain engage in highly structured oscillatory dynamics that can be observed in the electroencephalogram (EEG). The ability to accurately describe changes in sleep state from these oscillations has thus been a major goal of sleep medicine. While numerous studies over the past 50 years have shown sleep to be a continuous, multifocal, dynamic process, long-standing clinical practice categorizes sleep EEG into discrete stages through visual inspection of 30-s epochs. By representing sleep as a coarsely discretized progression of stages, vital neurophysiological information on the dynamic interplay between sleep and arousal is lost. However, by using principled time-frequency spectral analysis methods, the rich dynamics of the sleep EEG are immediately visible—elegantly depicted and quantified at time scales ranging from a full night down to individual microevents. In this paper, we review the neurophysiology of sleep through this lens of dynamic spectral analysis. We begin by reviewing spectral estimation techniques traditionally used in sleep EEG analysis and introduce multitaper spectral analysis, a method that makes EEG spectral estimates clearer and more accurate than traditional approaches. Through the lens of the multitaper spectrogram, we review the oscillations and mechanisms underlying the traditional sleep stages. In doing so, we will demonstrate how multitaper spectral analysis makes the oscillatory structure of traditional sleep states instantaneously visible, closely paralleling the traditional hypnogram, but with a richness of information that suggests novel insights into the neural mechanisms of sleep, as well as novel clinical and research applications.


Sign in / Sign up

Export Citation Format

Share Document