scholarly journals Frequency-based Segregation of Syntactic and Semantic Unification during Online Sentence Level Language Comprehension

2015 ◽  
Vol 27 (11) ◽  
pp. 2095-2107 ◽  
Author(s):  
Marcel Bastiaansen ◽  
Peter Hagoort

During sentence level language comprehension, semantic and syntactic unification are functionally distinct operations. Nevertheless, both recruit roughly the same brain areas (spatially overlapping networks in the left frontotemporal cortex) and happen at the same time (in the first few hundred milliseconds after word onset). We tested the hypothesis that semantic and syntactic unification are segregated by means of neuronal synchronization of the functionally relevant networks in different frequency ranges: gamma (40 Hz and up) for semantic unification and lower beta (10–20 Hz) for syntactic unification. EEG power changes were quantified as participants read either correct sentences, syntactically correct though meaningless sentences (syntactic prose), or sentences that did not contain any syntactic structure (random word lists). Other sentences contained either a semantic anomaly or a syntactic violation at a critical word in the sentence. Larger EEG gamma-band power was observed for semantically coherent than for semantically anomalous sentences. Similarly, beta-band power was larger for syntactically correct sentences than for incorrect ones. These results confirm the existence of a functional dissociation in EEG oscillatory dynamics during sentence level language comprehension that is compatible with the notion of a frequency-based segregation of syntactic and semantic unification.

2020 ◽  
Vol 32 (5) ◽  
pp. 762-782
Author(s):  
Orly Rubinsten ◽  
Nachshon Korem ◽  
Naama Levin ◽  
Tamar Furman

Recent evidence suggests that during numerical calculation, symbolic and nonsymbolic processing are functionally distinct operations. Nevertheless, both roughly recruit the same brain areas (spatially overlapping networks in the parietal cortex) and happen at the same time (roughly 250 msec poststimulus onset). We tested the hypothesis that symbolic and nonsymbolic processing are segregated by means of functionally relevant networks in different frequency ranges: high gamma (above 50 Hz) for symbolic processing and lower beta (12–17 Hz) for nonsymbolic processing. EEG signals were quantified as participants compared either symbolic numbers or nonsymbolic quantities. Larger EEG gamma-band power was observed for more difficult symbolic comparisons (ratio of 0.8 between the two numbers) than for easier comparisons (ratio of 0.2) over frontocentral regions. Similarly, beta-band power was larger for more difficult nonsymbolic comparisons than for easier ones over parietal areas. These results confirm the existence of a functional dissociation in EEG oscillatory dynamics during numerical processing that is compatible with the notion of distinct linguistic processing of symbolic numbers and approximation of nonsymbolic numerical information.


2010 ◽  
Vol 22 (7) ◽  
pp. 1333-1347 ◽  
Author(s):  
Marcel Bastiaansen ◽  
Lilla Magyari ◽  
Peter Hagoort

There is growing evidence suggesting that synchronization changes in the oscillatory neuronal dynamics in the EEG or MEG reflect the transient coupling and uncoupling of functional networks related to different aspects of language comprehension. In this work, we examine how sentence-level syntactic unification operations are reflected in the oscillatory dynamics of the MEG. Participants read sentences that were either correct, contained a word category violation, or were constituted of random word sequences devoid of syntactic structure. A time–frequency analysis of MEG power changes revealed three types of effects. The first type of effect was related to the detection of a (word category) violation in a syntactically structured sentence, and was found in the alpha and gamma frequency bands. A second type of effect was maximally sensitive to the syntactic manipulations: A linear increase in beta power across the sentence was present for correct sentences, was disrupted upon the occurrence of a word category violation, and was absent in syntactically unstructured random word sequences. We therefore relate this effect to syntactic unification operations. Thirdly, we observed a linear increase in theta power across the sentence for all syntactically structured sentences. The effects are tentatively related to the building of a working memory trace of the linguistic input. In conclusion, the data seem to suggest that syntactic unification is reflected by neuronal synchronization in the lower-beta frequency band.


1999 ◽  
Vol 11 (6) ◽  
pp. 657-671 ◽  
Author(s):  
Jos J. A. van Berkum ◽  
Peter Hagoort ◽  
Colin M. Brown

In two ERP experiments we investigated how and when the language comprehension system relates an incoming word to semantic representations of an unfolding local sentence and a wider discourse. In Experiment 1, subjects were presented with short stories. The last sentence of these stories occasionally contained a critical word that, although acceptable in the local sentence context, was semantically anomalous with respect to the wider discourse (e.g., Jane told the brother that he was exceptionally slow in a discourse context where he had in fact been very quick). Relative to coherent control words (e.g., quick), these discourse-dependent semantic anomalies elicited a large N400 effect that began at about 200 to 250 msec after word onset. In Experiment 2, the same sentences were presented without their original story context. Although the words that had previously been anomalous in discourse still elicited a slightly larger average N400 than the coherent words, the resulting N400 effect was much reduced, showing that the large effect observed in stories depended on the wider discourse. In the same experiment, single sentences that contained a clear local semantic anomaly elicited a standard sentence-dependent N400 effect (e.g., Kutas & Hillyard, 1980). The N400 effects elicited in discourse and in single sentences had the same time course, overall morphology, and scalp distribution. We argue that these findings are most compatible with models of language processing in which there is no fundamental distinction between the integration of a word in its local (sentence-level) and its global (discourse-level) semantic context.


2011 ◽  
Vol 23 (12) ◽  
pp. 4106-4121 ◽  
Author(s):  
Irene van de Vijver ◽  
K. Richard Ridderinkhof ◽  
Michael X Cohen

Frontal oscillatory dynamics in the theta (4–8 Hz) and beta (20–30 Hz) frequency bands have been implicated in cognitive control processes. Here we investigated the changes in coordinated activity within and between frontal brain areas during feedback-based response learning. In a time estimation task, participants learned to press a button after specific, randomly selected time intervals (300–2000 msec) using the feedback after each button press (correct, too fast, too slow). Consistent with previous findings, theta-band activity over medial frontal scalp sites (presumably reflecting medial frontal cortex activity) was stronger after negative feedback, whereas beta-band activity was stronger after positive feedback. Theta-band power predicted learning only after negative feedback, and beta-band power predicted learning after positive and negative feedback. Furthermore, negative feedback increased theta-band intersite phase synchrony (a millisecond resolution measure of functional connectivity) among right lateral prefrontal, medial frontal, and sensorimotor sites. These results demonstrate the importance of frontal theta- and beta-band oscillations and intersite communication in the realization of reinforcement learning.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2461
Author(s):  
Alexander Kuc ◽  
Vadim V. Grubov ◽  
Vladimir A. Maksimenko ◽  
Natalia Shusharina ◽  
Alexander N. Pisarchik ◽  
...  

Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task. We observe that parietal and temporal beta-band wavelet power monotonically increases throughout the perceptual process. Ambiguity induces high frontal beta-band power at 0.3–0.6 s post-stimulus onset. It may reflect the increasing reliance on the top-down mechanisms to facilitate accumulating decision-relevant sensory features. Finally, this study analyzes the perceptual process using mixed within-trial and within-subject design. First, we found significant percept-related changes in each subject and then test their significance at the group level. Thus, observed beta-band biomarkers are pronounced in single EEG trials and may serve as control commands for brain-computer interface (BCI).


2010 ◽  
Vol 117 (2-3) ◽  
pp. 475
Author(s):  
Remko Van Lutterveld ◽  
Arjan Hillebrand ◽  
Cornelis J. Stam ◽  
René S. Kahn ◽  
Iris E. Sommer

2021 ◽  
Author(s):  
Milou J.L. van Helvert ◽  
Leonie Oostwoud Wijdenes ◽  
Linda Geerligs ◽  
W. Pieter Medendorp

AbstractWhile beta-band activity during motor planning is known to be modulated by uncertainty about where to act, less is known about its modulations to uncertainty about how to act. To investigate this issue, we recorded oscillatory brain activity with EEG while human participants (n = 17) performed a hand choice reaching task. The reaching hand was either predetermined or of participants’ choice, and the target was close to one of the two hands or at about equal distance from both. To measure neural activity in a motion-artifact-free time window, the location of the upcoming target was cued 1000-1500 ms before the presentation of the target, whereby the cue was valid in 50% of trials. As evidence for motor planning during the cueing phase, behavioral observations showed that the cue affected later hand choice. Furthermore, reaction times were longer in the choice than in the predetermined trials, supporting the notion of a competitive process for hand selection. Modulations of beta-band power over central cortical regions, but not alpha-band or theta-band power, were in line with these observations. During the cueing period, reaches in predetermined trials were preceded by larger decreases in beta-band power than reaches in choice trials. Cue direction did not affect reaction times or beta-band power, which may be due to the cue being invalid in 50% of trials, retaining effector uncertainty during motor planning. Our findings suggest that effector uncertainty, similar to target uncertainty, selectively modulates beta-band power during motor planning.New & NoteworthyWhile reach-related beta-band power in central cortical areas is known to modulate with the number of potential targets, here we show, using a cueing paradigm, that the power in this frequency band, but not in the alpha or theta-band, is also modulated by the uncertainty of which hand to use. This finding supports the notion that multiple possible effector-specific actions can be specified in parallel up to the level of motor preparation.


2019 ◽  
pp. 141-164
Author(s):  
György Buzsáki

Brain oscillations are present in the same form in all mammals and represent a fundamental aspect of neuronal computation, including the generation of movement patterns, speech, and music production. Neuronal oscillators readily entrain each other, making the exchange of messages between brain areas effective. Because all neuronal oscillations are based on inhibition, they can parse and concatenate neuronal messages, a prerequisite for any coding mechanism. This chapter discusses how the hierarchical nature of cross-frequency–coupled rhythms can serve as a scaffold for combining neuronal letters into words and words into sentences, thus providing a syntactic structure for information exchange.


Sign in / Sign up

Export Citation Format

Share Document