Language Learning without Control: The Role of the PFC

2013 ◽  
Vol 25 (5) ◽  
pp. 814-821 ◽  
Author(s):  
Angela D. Friederici ◽  
Jutta L. Mueller ◽  
Bernhard Sehm ◽  
Patrick Ragert

Learning takes place throughout lifetime but differs in infants and adults because of the development of the PFC, a brain region responsible for cognitive control. To test this hypothesis, adults were investigated in a language learning paradigm under inhibitory, cathodal transcranial direct current stimulation over PFC. The experiment included a learning session interspersed with test phases and a test-only session. The stimulus material required the learning of grammatical dependencies between two elements in a novel language. In a parallel design, cathodal transcranial direct current stimulation over the left PFC, right PFC, or sham stimulation was applied during the learning session but not during the test-only session. Event-related brain potentials (ERPs) were recorded during both sessions. Whereas no ERP learning effects were observed during the learning session, different ERP learning effects as a function of prior stimulation type were found during the test-only session, although behavioral learning success was equal across conditions. With sham stimulation, the ERP learning effect was reflected in a centro-parietal N400-like negativity indicating lexical processes. Inhibitory stimulation over the left PFC, but not over the right PFC, led to a late positivity similar to that previously observed in prelinguistic infants indicating associative learning. The present data demonstrate that adults can learn with and without cognitive control using different learning mechanisms. In the presence of cognitive control, adult language learning is lexically guided, whereas it appears to be associative in nature when PFC control is downregulated.

2017 ◽  
Vol 117 (1) ◽  
pp. 429-435 ◽  
Author(s):  
Rachael D. Seidler ◽  
Brittany S. Gluskin ◽  
Brian Greeley

We have previously reported that visuospatial working memory performance and magnitude of activation in the right dorsolateral prefrontal cortex predict the rate of visuomotor adaptation. Recent behavioral studies suggest that sensorimotor savings, or faster relearning on second exposure to a task, are due to recall of these early, strategic components of adaptation. In the present study we applied anodal transcranial direct current stimulation to right or left prefrontal cortex or left motor cortex. We found that all groups adapted dart throwing movements while wearing prism lenses at the same rate as subjects receiving sham stimulation on day 1. On test day 2, which was conducted a few days later, the right prefrontal and left motor cortex groups adapted faster than the sham group. Moreover, only the right prefrontal group exhibited greater savings, expressed as a greater difference between day 1 and day 2 errors, compared with sham stimulation. These findings support the hypothesis that the right prefrontal cortex contributes to sensorimotor adaptation and savings. NEW & NOTEWORTHY We have previously reported that visuospatial working memory performance and magnitude of activation in the right dorsolateral prefrontal cortex predict the rate of manual visuomotor adaptation. Sensorimotor savings, or faster adaptation to a previously experienced perturbation, has been recently linked to cognitive processes. We show that facilitating the right prefrontal cortex with anodal transcranial direct current stimulation enhances sensorimotor savings compared with sham stimulation.


2021 ◽  
Vol 11 (2) ◽  
pp. 270
Author(s):  
Angelito Braulio F. de Venecia ◽  
Shane M. Fresnoza

Proliferative diabetic retinopathy (PDR) is a severe complication of diabetes. PDR-related retinal hemorrhages often lead to severe vision loss. The main goals of management are to prevent visual impairment progression and improve residual vision. We explored the potential of transcranial direct current stimulation (tDCS) to enhance residual vision. tDCS applied to the primary visual cortex (V1) may improve visual input processing from PDR patients’ retinas. Eleven PDR patients received cathodal tDCS stimulation of V1 (1 mA for 10 min), and another eleven patients received sham stimulation (1 mA for 30 s). Visual acuity (logarithm of the minimum angle of resolution (LogMAR) scores) and number acuity (reaction times (RTs) and accuracy rates (ARs)) were measured before and immediately after stimulation. The LogMAR scores and the RTs of patients who received cathodal tDCS decreased significantly after stimulation. Cathodal tDCS has no significant effect on ARs. There were no significant changes in the LogMAR scores, RTs, and ARs of PDR patients who received sham stimulation. The results are compatible with our proposal that neuronal noise aggravates impaired visual function in PDR. The therapeutic effect indicates the potential of tDCS as a safe and effective vision rehabilitation tool for PDR patients.


2021 ◽  
Vol 10 (13) ◽  
pp. 2981
Author(s):  
Andrés Pino-Esteban ◽  
Álvaro Megía-García ◽  
David Martín-Caro Álvarez ◽  
Hector Beltran-Alacreu ◽  
Juan Avendaño-Coy ◽  
...  

Transcranial direct current stimulation (tDCS) is a non-invasive, easy to administer, well-tolerated, and safe technique capable of affecting brain excitability, both at the cortical and cerebellum levels. However, its effectiveness has not been sufficiently assessed in all population segments or clinical applications. This systematic review aimed at compiling and summarizing the currently available scientific evidence about the effect of tDCS on functionality in older adults over 60 years of age. A search of databases was conducted to find randomized clinical trials that applied tDCS versus sham stimulation in the above-mentioned population. No limits were established in terms of date of publication. A total of 237 trials were found, of which 24 met the inclusion criteria. Finally, nine studies were analyzed, including 260 healthy subjects with average age between 61.0 and 85.8 years. Seven of the nine included studies reported superior improvements in functionality variables following the application of tDCS compared to sham stimulation. Anodal tDCS applied over the motor cortex may be an effective technique for improving balance and posture control in healthy older adults. However, further high-quality randomized controlled trials are required to determine the most effective protocols and to clarify potential benefits for older adults.


2017 ◽  
Vol 41 (S1) ◽  
pp. S374-S374 ◽  
Author(s):  
A. Kortteenniemi ◽  
T. Ali-Sisto ◽  
J. Wikgren ◽  
S. Lehto

IntroductionTranscranial direct current stimulation (tDCS) is a promising neuromodulation method that has, for example, been used to treat depression. Nevertheless, the adverse effects of tDCS and the validity of the current standard tDCS sham protocols have received limited attention.ObjectivesTo evaluate the extent and types of tDCS adverse effects and to assess the reliability of sham stimulation as a control procedure for tDCS in a double-blind setting.AimsTo compare adverse effects between tDCS and sham stimulation groups, and to determine how well the participants and the experimenter are able to distinguish tDCS from sham stimulation.MethodsA sample of healthy volunteers received a 20-minute session of either tDCS (n = 41; 2 mA) or sham stimulation (n = 41; ramp up 15 s, ramp down 15 s; no current in between). The anode was placed over F3 and cathode over F4. Both the participants and the experimenter reported immediate adverse effects and the perceived likelihood for the participant to receive tDCS. Analyses were conducted using the Mann–Whitney U-test.ResultsThe tDCS group reported more erythema compared with the sham group (P = 0.016, Cohen's D = 0.444). No other significant differences in adverse effects were observed. In the tDCS group, both the participants (P = 0.034, Cohen's D = 0.612) and the experimenter (P = 0.006, Cohen's D = 0.674) reported a higher perceived likelihood of the participant receiving tDCS than in the sham group.ConclusionstDCS has only modest adverse effects. Nevertheless, the current standard sham protocol appears insufficient.Disclosure of interestThe authors have not supplied their declaration of competing interest.


Author(s):  
Vincent Cabibel ◽  
Makii Muthalib ◽  
Jérôme Froger ◽  
Stéphane Perrey

Repeated transcranial magnetic stimulation (rTMS) is a well-known clinical neuromodulation technique, but transcranial direct-current stimulation (tDCS) is rapidly growing interest for neurorehabilitation applications. Both methods (contralesional hemisphere inhibitory low-frequency: LF-rTMS or lesional hemisphere excitatory anodal: a-tDCS) have been employed to modify the interhemispheric imbalance following stroke. The aim of this pilot study was to compare aHD-tDCS (anodal high-definition tDCS) of the left M1 (2 mA, 20 min) and LF-rTMS of the right M1 (1 Hz, 20 min) to enhance excitability and reduce inhibition of the left primary motor cortex (M1) in five healthy subjects. Single-pulse TMS was used to elicit resting and active (low level muscle contraction, 5% of maximal electromyographic signal) motor-evoked potentials (MEPs) and cortical silent periods (CSPs) from the right and left extensor carpi radialis muscles at Baseline, immediately and 20 min (Post-Stim-20) after the end of each stimulation protocol. LF-rTMS or aHD-tDCS significantly increased right M1 resting and active MEP amplitude at Post-Stim-20 without any CSP modulation and with no difference between methods. In conclusion, this pilot study reported unexpected M1 excitability changes, which most likely stems from variability, which is a major concern in the field to consider.


2019 ◽  
Vol 29 ◽  
pp. S850-S851
Author(s):  
Ariane Wiegand ◽  
Christof Brückmann ◽  
Christian Plewnia ◽  
Vanessa Nieratschker

Sign in / Sign up

Export Citation Format

Share Document