The Semantics of Syntax: The Grounding of Transitive and Intransitive Constructions

2016 ◽  
Vol 28 (5) ◽  
pp. 693-709 ◽  
Author(s):  
Wessel O. van Dam ◽  
Rutvik H. Desai

Embodied theories of language maintain that brain areas associated with perception and action are also involved in the processing and representation of word meaning. A number of studies have shown that sentences with action verbs elicit activation within sensory–motor brain regions, arguing that sentence-induced mental simulations provide a means for grounding their lexical-semantic meaning. Constructionist theories argue, however, that form–meaning correspondence is present not only at the lexical level but also at the level of constructions. We investigated whether sentence-induced motor resonance is present for syntactic constructions. We measured the BOLD signal while participants read sentences with (di)transitive (caused motion) or intransitive constructions that contained either action or abstract verbs. The results showed a distinct neuronal signature for caused motion and intransitive syntactic frames. Caused motion frames activated regions associated with reaching and grasping actions, including the left anterior intraparietal sulcus and the parietal reach region. Intransitive frames activated lateral temporal regions commonly associated with abstract word processing. The left pars orbitalis showed an interaction between the syntactic frame and verb class. These findings show that sensory–motor activation elicited by sentences entails both motor resonance evoked by single words as well as at the level of syntactic constructions.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura Bechtold ◽  
Christian Bellebaum ◽  
Paul Hoffman ◽  
Marta Ghio

AbstractThis study aimed to replicate and validate concreteness and context effects on semantic word processing. In Experiment 1, we replicated the behavioral findings of Hoffman et al. (Cortex 63,250–266, https://doi.org/10.1016/j.cortex.2014.09.001, 2015) by applying their cueing paradigm with their original stimuli translated into German. We found concreteness and contextual cues to facilitate word processing in a semantic judgment task with 55 healthy adults. The two factors interacted in their effect on reaction times: abstract word processing profited more strongly from a contextual cue, while the concrete words’ processing advantage was reduced but still present. For accuracy, the descriptive pattern of results suggested an interaction, which was, however, not significant. In Experiment 2, we reformulated the contextual cues to avoid repetition of the to-be-processed word. In 83 healthy adults, the same pattern of results emerged, further validating the findings. Our corroborating evidence supports theories integrating representational richness and semantic control mechanisms as complementary mechanisms in semantic word processing.


2011 ◽  
Vol 23 (1) ◽  
pp. 106-118 ◽  
Author(s):  
Javier Rodríguez-Ferreiro ◽  
Silvia P. Gennari ◽  
Robert Davies ◽  
Fernando Cuetos

The present study investigated the neural correlates of the processing of abstract (low imageability) verbs. An extensive body of literature has investigated concrete versus abstract nouns but little is known about how abstract verbs are processed. Spanish abstract verbs including emotion verbs (e.g., amar, “to love”; molestar, “to annoy”) were compared to concrete verbs (e.g., llevar, “to carry”; arrastrar, “to drag”). Results indicated that abstract verbs elicited stronger activity in regions previously associated with semantic retrieval such as inferior frontal, anterior temporal, and posterior temporal regions, and that concrete and abstract activation networks (compared to that of pseudoverbs) were partially distinct, with concrete verbs eliciting more posterior activity in these regions. In contrast to previous studies investigating nouns, verbs strongly engage both left and right inferior frontal gyri, suggesting, as previously found, that right prefrontal cortex aids difficult semantic retrieval. Together with previous evidence demonstrating nonverbal conceptual roles for the active regions as well as experiential content for abstract word meanings, our results suggest that abstract verbs impose greater demands on semantic retrieval or property integration, and are less consistent with the view that abstract words recruit left-lateralized regions because they activate verbal codes or context, as claimed by proponents of the dual-code theory. Moreover, our results are consistent with distributed accounts of semantic memory because distributed networks may coexist with varying retrieval demands.


2020 ◽  
Author(s):  
Lukas Hensel ◽  
Caroline Tscherpel ◽  
Jana Freytag ◽  
Stella Ritter ◽  
Anne K Rehme ◽  
...  

Abstract Hemiparesis after stroke is associated with increased neural activity not only in the lesioned but also in the contralesional hemisphere. While most studies have focused on the role of contralesional primary motor cortex (M1) activity for motor performance, data on other areas within the unaffected hemisphere are scarce, especially early after stroke. We here combined functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) to elucidate the contribution of contralesional M1, dorsal premotor cortex (dPMC), and anterior intraparietal sulcus (aIPS) for the stroke-affected hand within the first 10 days after stroke. We used “online” TMS to interfere with neural activity at subject-specific fMRI coordinates while recording 3D movement kinematics. Interfering with aIPS activity improved tapping performance in patients, but not healthy controls, suggesting a maladaptive role of this region early poststroke. Analyzing effective connectivity parameters using a Lasso prediction model revealed that behavioral TMS effects were predicted by the coupling of the stimulated aIPS with dPMC and ipsilesional M1. In conclusion, we found a strong link between patterns of frontoparietal connectivity and TMS effects, indicating a detrimental influence of the contralesional aIPS on motor performance early after stroke.


2007 ◽  
Vol 10 (2) ◽  
pp. 201-210 ◽  
Author(s):  
BRENDAN STUART WEEKES ◽  
I FAN SU ◽  
WENGANG YIN ◽  
XIHONG ZHANG

Cognitive neuropsychological studies of bilingual patients with aphasia have contributed to our understanding of how the brain processes different languages. The question we asked is whether differences in script have any impact on language processing in bilingual aphasic patients who speak languages with different writing systems: Chinese and Mongolian. We observed a pattern of greater impairment to written word comprehension and oral reading in L2 (Chinese) than in L1 (Mongolian) for two patients. We argue that differences in script have only a minimal effect on written word processing in bilingual aphasia when the age of acquisition, word frequency and imageability of lexical items is controlled. Our conclusion is that reading of familiar words in Mongolian and Chinese might not require independent cognitive systems or brain regions.


2010 ◽  
Vol 5 (2) ◽  
pp. 231-254 ◽  
Author(s):  
Véronique Boulenger ◽  
Tatjana A. Nazir

Theories of embodied cognition consider language understanding as intimately linked to sensory and motor processes. Here we review evidence from kinematic and electrophysiological studies for the idea that processing of words referring to bodily actions, even when subliminally presented, recruits the same motor regions that are involved in motor control. We further discuss the functional role of the motor system in action word retrieval in light of neuropsychological data showing modulation of masked priming effects for action verbs in Parkinson’s patients as a function of dopaminergic treatment. Finally, a neuroimaging study revealing semantic somatotopy in the motor cortex during reading of idioms that include action words is presented. Altogether these findings provide strong arguments that semantic mechanisms are grounded in action-perception systems of the brain. They support the existence of common brain signatures to action words, even when embedded in idiomatic sentences, and motor action. They further suggest that motor schemata reflecting word meaning contribute to lexico-semantic retrieval of action words.


1994 ◽  
Vol 11 (1) ◽  
pp. 1-34 ◽  
Author(s):  
Sue Franklin ◽  
David Howard ◽  
Karalyn Patterson
Keyword(s):  

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Jonathan Vivian Dickens ◽  
Andrew T DeMarco ◽  
Candace M van der Stelt ◽  
Sarah F Snider ◽  
Elizabeth H Lacey ◽  
...  

Abstract Alexia is common in the context of aphasia. It is widely agreed that damage to phonological and semantic systems not specific to reading causes co-morbid alexia and aphasia. Studies of alexia to date have only examined phonology and semantics as singular processes or axes of impairment, typically in the context of stereotyped alexia syndromes. However, phonology, in particular, is known to rely on subprocesses, including sensory-phonological processing, motor-phonological processing, and sensory-motor integration. Moreover, many people with stroke aphasia demonstrate mild or mixed patterns of reading impairment that do not fit neatly with one syndrome. This cross-sectional study tested whether the hallmark symptom of phonological reading impairment, the lexicality effect, emerges from damage to a specific subprocess of phonology in stroke patients not selected for alexia syndromes. Participants were 30 subjects with left-hemispheric stroke and 37 age- and education-matched controls. A logistic mixed-effects model tested whether post-stroke impairments in sensory phonology, motor phonology, or sensory-motor integration modulated the effect of item lexicality on patient accuracy in reading aloud. Support vector regression voxel-based lesion-symptom mapping localized brain regions necessary for reading and non-orthographic phonological processing. Additionally, a novel support vector regression structural connectome-symptom mapping method identified the contribution of both lesioned and spared but disconnected, brain regions to reading accuracy and non-orthographic phonological processing. Specifically, we derived whole-brain structural connectomes using constrained spherical deconvolution-based probabilistic tractography and identified lesioned connections based on comparisons between patients and controls. Logistic mixed-effects regression revealed that only greater motor-phonological impairment related to lower accuracy reading aloud pseudowords versus words. Impaired sensory-motor integration was related to lower overall accuracy in reading aloud. No relationship was identified between sensory-phonological impairment and reading accuracy. Voxel-based and structural connectome lesion-symptom mapping revealed that lesioned and disconnected left ventral precentral gyrus related to both greater motor-phonological impairment and lower sublexical reading accuracy. In contrast, lesioned and disconnected left temporoparietal cortex is related to both impaired sensory-motor integration and reduced overall reading accuracy. These results clarify that at least two dissociable phonological processes contribute to the pattern of reading impairment in aphasia. First, impaired sensory-motor integration, caused by lesions disrupting the left temporoparietal cortex and its structural connections, non-selectively reduces accuracy in reading aloud. Second, impaired motor-phonological processing, caused at least partially by lesions disrupting left ventral premotor cortex and structural connections, selectively reduces sublexical reading accuracy. These results motivate a revised cognitive model of reading aloud that incorporates a sensory-motor phonological circuit.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaosha Wang ◽  
Guochao Li ◽  
Gang Zhao ◽  
Yunqian Li ◽  
Bijun Wang ◽  
...  

AbstractAn essential aspect of human cognition is supported by a rich reservoir of abstract concepts without tangible external referents (e.g., “honor”, “relationship”, “direction”). While decades of research showed that the neural organization of conceptual knowledge referring to concrete words respects domains of evolutionary salience and sensorimotor attributes, the organization principles of abstract word meanings are poorly understood. Here, we provide neuropsychological evidence for a domain (sociality) and attribute (emotion) structure in abstract word processing. Testing 34 brain-damaged patients on a word-semantic judgment task, we observed double dissociations between social and nonsocial words and a single dissociation of sparing of emotional (relative to non-emotional) words. The lesion profiles of patients with specific dissociations suggest potential neural correlates positively or negatively associated with each dimension. These results unravel a general domain-attribute architecture of word meanings and highlight the roles of the social domain and the emotional attribute in the non-object semantic space.


2021 ◽  
Author(s):  
Jia-Qing Tong ◽  
Jeffrey R. Binder ◽  
Colin J. Humphries ◽  
Lisa L. Conant ◽  
Leonardo Fernandino

The architecture of the cortical system underlying concept representation is a topic of intense debate. Much evidence supports the claim that concept retrieval selectively engages sensory, motor, and other neural systems involved in the acquisition of the retrieved concept, yet there is also strong evidence for involvement of high-level, supramodal cortical regions. A fundamental question about the organization of this system is whether modality-specific information originating from sensory and motor areas is integrated across multiple ″convergence zones″ or in a single centralized ″hub″. We used representational similarity analysis (RSA) of fMRI data to map brain regions where the similarity structure of neural patterns elicited by large sets of concepts matched the similarity structure predicted by a high-dimensional model of concept representation based on sensory, motor, affective, and other modal aspects of experience. Across two studies involving different sets of concepts, different participants, and different tasks, searchlight RSA revealed a distributed, bihemispheric network engaged in multimodal experiential representation, composed of high-level association cortex in anterior, lateral, and ventral temporal lobe; inferior parietal lobule; posterior cingulate gyrus and precuneus; and medial, dorsal, ventrolateral, and orbital prefrontal cortex. These regions closely resemble networks previously implicated in general semantic and ″default mode″ processing and are known to be high-level hubs for convergence of multimodal processing streams. Supplemented by an exploratory cluster analysis, these results indicate that the concept representation system consists of multiple, hierarchically organized convergence zones supporting multimodal integration of experiential information.


2019 ◽  
Author(s):  
Laura Barca

Overusing the pacifier in infancy affects abstract word processing later in life. In previous studies, we showed that using the pacifier for more than 3 years of age affects the conceptual relations used to define the meaning of words at age 6. Similarly, in semantically categorizing a set of abstract, concrete and emotional words, 8-years old children who used the pacifier for a longer period were slower in processing abstract stimuli, but not concrete and emotional ones. Children of both studies have a typical development and no diagnosis of cognitive or linguistic disorders. Here, we propose an account of the effect of Age of Pacifier Withdrawal (APW) within the DIVA neurocomputational model of speech development and production (Guenther, F.H., & Vladusich, T. (2013). A Neural Theory of speech acquisition and production. Journal of Neurolinguistics, 25 (5), 408-422.). Using the pacifier for a longer period during social interaction might hinder proprioceptive information and speech-motor program (limiting the co-articulation of speech) as well as auditory input (as the child receives an inaccurate input of his/her own speech). We suggest that auditory speech representation might be worth exploring in children using the pacifier for more than three years of age.


Sign in / Sign up

Export Citation Format

Share Document