Individual Alpha Frequency Predicts Perceived Visuotactile Simultaneity

2020 ◽  
Vol 32 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Daniele Migliorati ◽  
Filippo Zappasodi ◽  
Mauro Gianni Perrucci ◽  
Brunella Donno ◽  
Georg Northoff ◽  
...  

Temporal encoding is a key feature in multisensory processing that leads to the integration versus segregation of perceived events over time. Whether or not two events presented at different offsets are perceived as simultaneous varies widely across the general population. Such tolerance to temporal delays is known as the temporal binding window (TBW). It has been recently suggested that individual oscillatory alpha frequency (IAF) peak may represent the electrophysiological correlate of TBW, with IAF also showing a wide variability in the general population (8–12 Hz). In our work, we directly tested this hypothesis by measuring each individual's TBW during a visuotactile simultaneity judgment task while concurrently recording their electrophysiological activity. We found that the individual's TBW significantly correlated with their left parietal IAF, such that faster IAF accounted for narrower TBW. Furthermore, we found that higher prestimulus alpha power measured over the same left parietal regions accounted for more veridical responses of non-simultaneity, which may be explained either by accuracy in perceptual simultaneity or, alternatively, in line with recent proposals by a shift in response bias from more conservative (high alpha power) to more liberal (low alpha power). We propose that the length of an alpha cycle constrains the temporal resolution within which perceptual processes take place.

2006 ◽  
Vol 61 (2) ◽  
pp. 235-243 ◽  
Author(s):  
Christine M. Smit ◽  
Margaret J. Wright ◽  
Narelle K. Hansell ◽  
Gina M. Geffen ◽  
Nicholas G. Martin

2017 ◽  
Vol 30 (6) ◽  
pp. 565-578 ◽  
Author(s):  
Julian Keil ◽  
Daniel Senkowski

Ongoing neural oscillations reflect fluctuations of cortical excitability. A growing body of research has underlined the role of neural oscillations for stimulus processing. Neural oscillations in the alpha band have gained special interest in electrophysiological research on perception. Recent studies proposed the idea that neural oscillations provide temporal windows in which sensory stimuli can be perceptually integrated. This also includes multisensory integration. In the current high-density EEG-study we examined the relationship between the individual alpha frequency (IAF) and cross-modal audiovisual integration in the sound-induced flash illusion (SIFI). In 26 human volunteers we found a negative correlation between the IAF and the SIFI illusion rate. Individuals with a lower IAF showed higher audiovisual illusions. Source analysis suggested an involvement of the visual cortex, especially the calcarine sulcus, for this relationship. Our findings corroborate the notion that the IAF affects the cross-modal integration of auditory on visual stimuli in the SIFI. We integrate our findings with recent observations on the relationship between audiovisual integration and neural oscillations and suggest a multifaceted influence of neural oscillations on multisensory processing.


2020 ◽  
Vol 50 (11) ◽  
pp. 3944-3956 ◽  
Author(s):  
Sayaka Kawakami ◽  
Shota Uono ◽  
Sadao Otsuka ◽  
Sayaka Yoshimura ◽  
Shuo Zhao ◽  
...  

Abstract The present study examined the relationship between multisensory integration and the temporal binding window (TBW) for multisensory processing in adults with Autism spectrum disorder (ASD). The ASD group was less likely than the typically developing group to perceive an illusory flash induced by multisensory integration during a sound-induced flash illusion (SIFI) task. Although both groups showed comparable TBWs during the multisensory temporal order judgment task, correlation analyses and Bayes factors provided moderate evidence that the reduced SIFI susceptibility was associated with the narrow TBW in the ASD group. These results suggest that the individuals with ASD exhibited atypical multisensory integration and that individual differences in the efficacy of this process might be affected by the temporal processing of multisensory information.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Giovanna Mioni ◽  
Adam Shelp ◽  
Candice T Stanfield-Wiswell ◽  
Keri A Gladhill ◽  
Farah Bader ◽  
...  

Abstract Previous studies have linked brain oscillation and timing, with evidence suggesting that alpha oscillations (10 Hz) may serve as a “sample rate” for the visual system. However, direct manipulation of alpha oscillations and time perception has not yet been demonstrated. To test this, we had 18 human subjects perform a time generalization task with visual stimuli. Additionally, we had previously recorded resting-state EEG from each subject and calculated their individual alpha frequency (IAF), estimated as the peak frequency from the mean spectrum over posterior electrodes between 8 and 13 Hz. Participants first learned a standard interval (600 ms) and were then required to judge if a new set of temporal intervals were equal or different compared with that standard. After learning the standard, participants performed this task while receiving occipital transcranial Alternating Current Stimulation (tACS). Crucially, for each subject, tACS was administered at their IAF or at off-peak alpha frequencies (IAF ± 2 Hz). Results demonstrated a linear shift in the psychometric function indicating a modification of perceived duration, such that progressively “faster” alpha stimulation led to longer perceived intervals. These results provide the first evidence that direct manipulations of alpha oscillations can shift perceived time in a manner consistent with a clock speed effect.


2013 ◽  
Vol 50 (6) ◽  
pp. 570-582 ◽  
Author(s):  
Thomas H. Grandy ◽  
Markus Werkle-Bergner ◽  
Christian Chicherio ◽  
Florian Schmiedek ◽  
Martin Lövdén ◽  
...  

2018 ◽  
Author(s):  
Elaine Y. L. Kwok ◽  
Janis Oram Cardy ◽  
Brian L. Allman ◽  
Prudence Allen ◽  
Björn Herrmann

AbstractEarly childhood is a period of tremendous growth in both language ability and brain maturation. To understand the dynamic interplay between neural activity and spoken language development, we used resting-state EEG recordings to explore the relation between alpha oscillations (7–10 Hz) and oral language ability in 4- to 6-year-old children with typical development (N=41). Three properties of alpha oscillations were investigated: a) alpha power using spectral analysis, b) flexibility of the alpha frequency quantified via the oscillation’s moment-to-moment fluctuations, and c) scaling behavior of the alpha oscillator investigated via the long-range temporal correlation in the alpha-amplitude time course. All three properties of the alpha oscillator correlated with children’s oral language abilities. Higher language scores were correlated with lower alpha power, greater flexibility of the alpha frequency, and longer temporal correlations in the alpha-amplitude time course. Our findings demonstrate a cognitive role of several properties of the alpha oscillator that has largely been overlooked in the literature. Graphical Abstract


NeuroImage ◽  
2008 ◽  
Vol 41 (2) ◽  
pp. 233-242 ◽  
Author(s):  
Stefan P. Koch ◽  
Sophie Koendgen ◽  
Riad Bourayou ◽  
Jens Steinbrink ◽  
Hellmuth Obrig

Sign in / Sign up

Export Citation Format

Share Document