individual alpha frequency
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 20)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Jasmina Wallace ◽  
Lydia Yahia-Cherif ◽  
Christophe Gitton ◽  
Laurent Hugueville ◽  
Jean-Didier Lemaréchal ◽  
...  

2021 ◽  
Author(s):  
Cedric Cannard ◽  
Helane Wahbeh ◽  
Arnaud Delorme

EEG power spectral density (PSD), the individual alpha frequency (IAF) and the frontal alpha asymmetry (FAA) are all EEG spectral measures that have been widely used to evaluate cognitive and attentional processes in experimental and clinical settings, and that can be used for real-world applications (e.g., remote EEG monitoring, brain-computer interfaces, neurofeedback, neuromodulation, etc.). Potential applications remain limited by the high cost, low mobility, and long preparation times associated with high-density EEG recording systems. Low-density wearable systems address these issues and can increase access to larger and diversified samples. The present study tested whether a low-cost, 4-channel wearable EEG system (the MUSE) could be used to quickly measure continuous EEG data, yielding similar frequency components compared to research a grade EEG system (the 64-channel BIOSEMI Active Two). We compare the spectral measures from MUSE EEG data referenced to mastoids to those from BIOSEMI EEG data with two different references for validation. A minimal amount of data was deliberately collected to test the feasibility for real-world applications (EEG setup and data collection being completed in under 5 min). We show that the MUSE can be used to examine power spectral density (PSD) in all frequency bands, the individual alpha frequency (IAF; i.e., peak alpha frequency and alpha center of gravity), and frontal alpha asymmetry. Furthermore, we observed satisfying internal consistency reliability in alpha power and asymmetry measures recorded with the MUSE. Estimating asymmetry on PAF and CoG frequencies did not yield significant advantages relative to the traditional method (whole alpha band). These findings should advance human neurophysiological monitoring using wearable neurotechnologies in large participant samples and increase the feasibility of their implementation in real-world settings.


2021 ◽  
Author(s):  
Zachariah Reuben Cross ◽  
Alex Chatburn ◽  
Lee Melberzs ◽  
Phil Temby ◽  
Diane Pomeroy ◽  
...  

Successful teamwork is fundamental for optimally functioning societies. However, little is known regarding the neural basis of real-world teamwork. Here, we recruited forty individuals paired as twenty dyads and recorded dual-EEG at rest and during realistic training scenarios of increasing complexity using virtual simulation systems. We estimated markers of intrinsic brain activity (i.e., individual alpha frequency and aperiodic activity), as well as task-related theta and alpha oscillations. Using nonlinear modelling and machine learning techniques, we found that resting-state EEG predicts performance and can also reliably differentiate between members within a dyad. Task-related theta and alpha activity during easy training tasks predicted later performance on complex training to a greater extent than prior behaviour. These findings complement laboratory-based research on both oscillatory and aperiodic activity in higher-order cognition and provide evidence that theta and alpha activity play a critical role in complex task performance in team environments.


2021 ◽  
Author(s):  
Julio Rodriguez-Larios ◽  
Eduardo A. Bracho Montes de Oca ◽  
Kaat Alaerts

Previous literature suggests that meditation training is associated with changes in participants' experience during meditation practice. In this study, we assess whether putative differences in the experience of meditation between meditators and non-meditators are reflected in EEG spectral modulations. For this purpose, we recorded electroencephalography (EEG) during rest and two breath focus meditations (with and without experience sampling) in a group of 29 adult participants with more than 3 years of meditation experience and a control group of 29 participants without any meditation experience. Experience sampling in one of the meditation conditions allowed us to disentangle periods of breath focus from mind wandering (i.e. moments of distraction driven by task-irrelevant thoughts) during meditation practice. Overall, meditators reported a greater level of focus and reduced mind wandering during meditation practice than controls. In line with these reports, EEG spectral modulations associated to meditation and mind wandering also differed significantly between meditators and controls. While meditators (but not controls) showed a significant decrease in individual alpha frequency and amplitude and a steeper 1/f slope during meditation relative to rest, controls (but not meditators) showed a relative increase in individual alpha amplitude during mind wandering relative to breath focus periods. Together, our results show that the experience of meditation changes with training and that this is reflected in oscillatory and non-oscillatory components of brain activity.


2021 ◽  
Author(s):  
Yong-Jun Lin ◽  
Lavanya Shukla ◽  
Laura Dugué ◽  
Antoni Valero-Cabré ◽  
Marisa Carrasco

Abstract Parieto-occipital alpha rhythms (8–12 Hz) underlie cortical excitability and influence visual performance. Whether the synchrony of intrinsic alpha rhythms in the occipital cortex can be entrained by transcranial magnetic stimulation (TMS) is an open question. We applied 4-pulse, 10-Hz rhythmic TMS to entrain intrinsic alpha oscillators targeting right V1/V2, and tested four predictions with concurrent electroencephalogram (EEG): (1) progressive enhancement of entrainment across time windows, (2) output frequency specificity, (3) dependence on the intrinsic oscillation phase, and (4) input frequency specificity to individual alpha frequency (IAF) in the neural signatures. Two control conditions with an equal number of pulses and duration were arrhythmic-active and rhythmic-sham stimulation. The results confirmed the first three predictions. Rhythmic TMS bursts significantly entrained local neural activity. Near the stimulation site, evoked oscillation amplitude and inter-trial phase coherence (ITPC) were increased for 2 and 3 cycles, respectively, after the last TMS pulse. Critically, ITPC following entrainment positively correlated with IAF rather than with the degree of similarity between IAF and the input frequency (10 Hz). Thus, we entrained alpha-band activity in occipital cortex for ~ 3 cycles (~ 300 ms), and IAF predicts the strength of entrained occipital alpha phase synchrony indexed by ITPC.


2021 ◽  
Vol 15 ◽  
Author(s):  
Thorben Hülsdünker ◽  
Andreas Mierau

While the resting-state individual alpha frequency (IAF) is related to the cognitive performance and temporal resolution of visual perception, it remains unclear how it affects the neural correlates of visual perception and reaction processes. This study aimed to unravel the relation between IAF, visual perception, and visuomotor reaction time. One hundred forty-eight (148) participants (28 non-athletes, 39 table tennis players, and 81 badminton players) investigated in three previous studies were considered. During a visuomotor reaction task, the visuomotor reaction time (VMRT) and EMG onset were determined. In addition, a 64-channel EEG system identified the N2, N2-r, and BA6 negativity potentials representing the visual and motor processes related to visuomotor reactions. Resting-state individual alpha frequency (IAF) in visual and motor regions was compared based on sport experience (athletes vs. non-athletes), discipline (badminton vs. table tennis), and reaction performance (fast vs. medium vs. slow reaction time). Further, the differences in the IAF were determined in relation to the speed of neural visual (high vs. medium vs. low N2/N2-r latency) and motor (high vs. medium vs. low BA6 negativity latency). Group comparisons did not reveal any difference in the IAF between athletes and non-athletes (p = 0.352, ηp2 = 0.02) or badminton and table tennis players (p = 0.221, ηp2 = 0.02). Similarly, classification based on the behavioral or neural performance indicators did not reveal any effects on the IAF (p ≥ 0.158, ηp2 ≤ 0.027). IAF was not correlated to any of the behavioral or neural parameters (r ≤ 0.10, p ≥ 0.221). In contrast to behavioral results on cognitive performance and visual temporal resolution, the resting state IAF seemed unrelated to the visual perception and visuomotor reaction speed in simple reaction tasks. Considering the previous results on the correlations between the IAF, cognitive abilities, and temporal sampling of visual information, the results suggest that a higher IAF may facilitate the amount and frequency but not the speed of information transfer.


2020 ◽  
Vol 148 ◽  
pp. 107660
Author(s):  
Zachariah R. Cross ◽  
Amanda Santamaria ◽  
Andrew W. Corcoran ◽  
Alex Chatburn ◽  
Phillip M. Alday ◽  
...  

Author(s):  
G. Mioni ◽  
A. Shelp ◽  
C. T. Stanfield-Wiswell ◽  
K. A. Gladhill ◽  
F. Bader ◽  
...  

ABSTRACTPrevious studies have linked brain oscillation and timing, with evidence suggesting that alpha oscillations (10Hz) may serve as a “sample rate” for the visual system. However, direct manipulation of alpha oscillations and time perception has not yet been demonstrated. Eighteen subjects performed a time generalization task with visual stimuli. Participants first learned the standard intervals (600 ms) and then were required to judge the new temporal intervals if they were equal or different compared to the standard. Additionally, we had previously recorded resting-state EEG from each subject and calculated their Individual Alpha Frequency (IAF), estimated as the peak frequency from the mean spectrum over posterior electrodes between 8 and 13 Hz. After learning the standard interval, participants performed the time generalization task while receiving occipital transcranial Alternating Current Stimulation (tACS). Crucially, for each subject, tACS was administered at their IAF or at off-peak alpha frequencies (IAF±2 Hz). Results demonstrated a linear shift in the psychometric function indicating a modification of perceived duration, such that progressively “faster” alpha stimulation led to longer perceived intervals. These results provide the first evidence that direct manipulations of alpha oscillations can shift perceived time in a manner consistent with a clock speed effect.


Sign in / Sign up

Export Citation Format

Share Document