Discrimination with Spike Times and ISI Distributions

2008 ◽  
Vol 20 (6) ◽  
pp. 1411-1426 ◽  
Author(s):  
Kukjin Kang ◽  
Shun-ichi Amari

We study the discrimination capability of spike time sequences using the Chernoff distance as a metric. We assume that spike sequences are generated by renewal processes and study how the Chernoff distance depends on the shape of interspike interval (ISI) distribution. First, we consider a lower bound to the Chernoff distance because it has a simple closed form. Then we consider specific models of ISI distributions such as the gamma, inverse gaussian (IG), exponential with refractory period (ER), and that of the leaky integrate-and-fire (LIF) neuron. We found that the discrimination capability of spike times strongly depends on high-order moments of ISI and that it is higher when the spike time sequence has a larger skewness and a smaller kurtosis. High variability in terms of coefficient of variation (CV) does not necessarily mean that the spike times have less discrimination capability. Spike sequences generated by the gamma distribution have the minimum discrimination capability for a given mean and variance of ISI. We used series expansions to calculate the mean and variance of ISIs for LIF neurons as a function of the mean input level and the input noise variance. Spike sequences from an LIF neuron are more capable of discrimination than those of IG and gamma distributions when the stationary voltage level is close to the neuron's threshold value of the neuron.

1987 ◽  
Vol 26 (03) ◽  
pp. 143-146 ◽  
Author(s):  
H. Fill ◽  
M. Oberladstätter ◽  
J. W. Krzesniak

The mean activity concentration of1311 during inhalation by the nuclear medicine personnel was measured at therapeutic activity applications of 22 GBq (600 mCi) per week. The activity concentration reached its maximum in the exhaled air of the patients 2.5 to 4 hours after oral application. The normalized maximum was between 2 • 10−5 and 2 • 10−3 Bq-m−3 per administered Bq. The mean activity concentration of1311 inhaled by the personnel was 28 to 1300 Bq-m−3 (0.8 to 35 nCi-rrf−3). From this the1311 uptake per year was estimated to be 30 to 400 kBq/a (x̄ = 250, SD = 50%). The maximum permitted uptake from air per year is, according to the German and Austrian radiation protection ordinances 22/21 µiCi/a (= 8 • 105 Bq/a). At maximum 50% and, on the average, 30% of this threshold value are reached. The length of stay of the personnel in the patient rooms is already now limited to such an extent that 10% of the maximum permissible whole-body dose for external radiation is not exceeded. Therefore, increased attention should be paid also to radiation exposure by inhalation.


Author(s):  
Hung Phuoc Truong ◽  
Thanh Phuong Nguyen ◽  
Yong-Guk Kim

AbstractWe present a novel framework for efficient and robust facial feature representation based upon Local Binary Pattern (LBP), called Weighted Statistical Binary Pattern, wherein the descriptors utilize the straight-line topology along with different directions. The input image is initially divided into mean and variance moments. A new variance moment, which contains distinctive facial features, is prepared by extracting root k-th. Then, when Sign and Magnitude components along four different directions using the mean moment are constructed, a weighting approach according to the new variance is applied to each component. Finally, the weighted histograms of Sign and Magnitude components are concatenated to build a novel histogram of Complementary LBP along with different directions. A comprehensive evaluation using six public face datasets suggests that the present framework outperforms the state-of-the-art methods and achieves 98.51% for ORL, 98.72% for YALE, 98.83% for Caltech, 99.52% for AR, 94.78% for FERET, and 99.07% for KDEF in terms of accuracy, respectively. The influence of color spaces and the issue of degraded images are also analyzed with our descriptors. Such a result with theoretical underpinning confirms that our descriptors are robust against noise, illumination variation, diverse facial expressions, and head poses.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 568
Author(s):  
Sabine G. Gebhardt-Henrich ◽  
Ariane Stratmann ◽  
Marian Stamp Dawkins

Group level measures of welfare flocks have been criticized on the grounds that they give only average measures and overlook the welfare of individual animals. However, we here show that the group-level optical flow patterns made by broiler flocks can be used to deliver information not just about the flock averages but also about the proportion of individuals in different movement categories. Mean optical flow provides information about the average movement of the whole flock while the variance, skew and kurtosis quantify the variation between individuals. We correlated flock optical flow patterns with the behavior and welfare of a sample of 16 birds per flock in two runway tests and a water (latency-to-lie) test. In the runway tests, there was a positive correlation between the average time taken to complete the runway and the skew and kurtosis of optical flow on day 28 of flock life (on average slow individuals came from flocks with a high skew and kurtosis). In the water test, there was a positive correlation between the average length of time the birds remained standing and the mean and variance of flock optical flow (on average, the most mobile individuals came from flocks with the highest mean). Patterns at the flock level thus contain valuable information about the activity of different proportions of the individuals within a flock.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiangjun Dai ◽  
Suli Wang ◽  
Weizhi Xiong ◽  
Ni Li

Abstract We propose and study a stochastic delay single-species population system in polluted environment with psychological effect and pulse toxicant input. We establish sufficient conditions for the extinction, nonpersistence in the mean, weak persistence, and strong persistence of the single-species population and obtain the threshold value between extinction and weak persistence. Finally, we confirm the efficiency of the main results by numerical simulations.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 955
Author(s):  
Alamir Elsayed ◽  
Mohamed El-Beltagy ◽  
Amnah Al-Juhani ◽  
Shorooq Al-Qahtani

The point kinetic model is a system of differential equations that enables analysis of reactor dynamics without the need to solve coupled space-time system of partial differential equations (PDEs). The random variations, especially during the startup and shutdown, may become severe and hence should be accounted for in the reactor model. There are two well-known stochastic models for the point reactor that can be used to estimate the mean and variance of the neutron and precursor populations. In this paper, we reintroduce a new stochastic model for the point reactor, which we named the Langevin point kinetic model (LPK). The new LPK model combines the advantages, accuracy, and efficiency of the available models. The derivation of the LPK model is outlined in detail, and many test cases are analyzed to investigate the new model compared with the results in the literature.


1991 ◽  
Vol 28 (3) ◽  
pp. 529-538
Author(s):  
M. P. Quine

Points arrive in succession on an interval and immediately ‘cover' a region of length ½ to each side (less if they are close to the boundary or to a covered part). The location of a new point is uniformly distributed on the uncovered parts. We study the mean and variance of the total number of points ever formed, in particular as a → 0, in which case we also establish asymptotic normality.


1969 ◽  
Vol 13 (2) ◽  
pp. 117-126 ◽  
Author(s):  
Derek J. Pike

Robertson (1960) used probability transition matrices to estimate changes in gene frequency when sampling and selection are applied to a finite population. Curnow & Baker (1968) used Kojima's (1961) approximate formulae for the mean and variance of the change in gene frequency from a single cycle of selection applied to a finite population to develop an iterative procedure for studying the effects of repeated cycles of selection and regeneration. To do this they assumed a beta distribution for the unfixed gene frequencies at each generation.These two methods are discussed and a result used in Kojima's paper is proved. A number of sets of calculations are carried out using both methods and the results are compared to assess the accuracy of Curnow & Baker's method in relation to Robertson's approach.It is found that the one real fault in the Curnow-Baker method is its tendency to fix too high a proportion of the genes, particularly when the initial gene frequency is near to a fixation point. This fault is largely overcome when more individuals are selected. For selection of eight or more individuals the Curnow-Baker method is very accurate and appreciably faster than the transition matrix method.


1980 ◽  
Vol 36 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Michael J. Wade

SUMMARYIn this paper I present the results of an experimental study of the effects of genotype and density on the mean and variance of offspring numbers in both sexes of the flour beetle, Tribolium castaneum. From the observed variance in offspring numbers the effective population size at several different densities is estimated using the methods of Crow & Morton (1955).I found that both the mean and variance of offspring numbers varied with genotype and density. In general, males were more variable in offspring numbers than females and this variability increased with density. Individuals homozygous for the black body colour mutant, b/b, were less variable in offspring numbers than + / + individuals, but the latter produced more offspring at most densities. As density increased, + / + individuals became more variable in offspring numbers whereas b/b individuals were less sensitive in this regard. These findings are discussed in relation to the ecology of selection at the black and closely linked loci.


Sign in / Sign up

Export Citation Format

Share Document