Approximate, Computationally Efficient Online Learning in Bayesian Spiking Neurons

2014 ◽  
Vol 26 (3) ◽  
pp. 472-496 ◽  
Author(s):  
Levin Kuhlmann ◽  
Michael Hauser-Raspe ◽  
Jonathan H. Manton ◽  
David B. Grayden ◽  
Jonathan Tapson ◽  
...  

Bayesian spiking neurons (BSNs) provide a probabilistic interpretation of how neurons perform inference and learning. Online learning in BSNs typically involves parameter estimation based on maximum-likelihood expectation-maximization (ML-EM) which is computationally slow and limits the potential of studying networks of BSNs. An online learning algorithm, fast learning (FL), is presented that is more computationally efficient than the benchmark ML-EM for a fixed number of time steps as the number of inputs to a BSN increases (e.g., 16.5 times faster run times for 20 inputs). Although ML-EM appears to converge 2.0 to 3.6 times faster than FL, the computational cost of ML-EM means that ML-EM takes longer to simulate to convergence than FL. FL also provides reasonable convergence performance that is robust to initialization of parameter estimates that are far from the true parameter values. However, parameter estimation depends on the range of true parameter values. Nevertheless, for a physiologically meaningful range of parameter values, FL gives very good average estimation accuracy, despite its approximate nature. The FL algorithm therefore provides an efficient tool, complementary to ML-EM, for exploring BSN networks in more detail in order to better understand their biological relevance. Moreover, the simplicity of the FL algorithm means it can be easily implemented in neuromorphic VLSI such that one can take advantage of the energy-efficient spike coding of BSNs.

Author(s):  
Weilin Nie ◽  
Cheng Wang

Abstract Online learning is a classical algorithm for optimization problems. Due to its low computational cost, it has been widely used in many aspects of machine learning and statistical learning. Its convergence performance depends heavily on the step size. In this paper, a two-stage step size is proposed for the unregularized online learning algorithm, based on reproducing Kernels. Theoretically, we prove that, such an algorithm can achieve a nearly min–max convergence rate, up to some logarithmic term, without any capacity condition.


2021 ◽  
Vol 21 (1) ◽  
pp. 33-38
Author(s):  
Peng Chen ◽  
Qin Chen ◽  
Zhijun Xie ◽  
Xiaohui Chen ◽  
Shaomei Zhao

Abstract In this paper, a computationally efficient and high precision parameter estimation algorithm with frequency-time combination is proposed to improve the estimation performance for sinusoidal signal in noise, which takes the advantages of frequency- and time-domain algorithms. The noise influence is suppressed through spectrum analysis to get coarse frequency, and the fine frequency is obtained by denoising filtering and using linear prediction property. Then, estimation values of the amplitude and initial phase are obtained. The numerical results indicate that the proposed algorithm makes up for the shortcomings of frequency- and time-domain algorithms and improves the anti-interference performance and parameter estimation accuracy for sinusoidal signal.


Author(s):  
Chetan R. Dongarsane ◽  
A.N. Jadhav ◽  
Swapnil M. Hirikude

ESPRIT is a high-resolution signal parameter estimation technique based on the translational invariance structure of a sensor array. The ESPRIT algorithm is an attractive solution to many parameter estimation problems due to its low computational cost. The performance of DOA using estimation signal parameter via a rotational invariant technique is investigated in this paper. By exploiting invariance’s designed into the sensor array, parameter estimates are obtained directly, without knowledge of the array response and without computation or search of some spectral measure. The exact number of samples and elements used is the most important parameter in the algorithms in order to sustain the accuracy of the direction of arrival of the incident signals. This algorithm is more robust with respect to array imperfections than MUSIC.


2006 ◽  
Vol 50 (1) ◽  
pp. 62-67 ◽  
Author(s):  
Jeffrey P. Hammel ◽  
Sujata M. Bhavnani ◽  
Ronald N. Jones ◽  
Alan Forrest ◽  
Paul G. Ambrose

ABSTRACT In order to identify patients likely to be infected with resistant bacterial pathogens, analytic methods such as standard regression (SR) may be applied to surveillance data to determine patient- and institution-specific factors predictive of an increased MIC. However, the censored nature of MIC data (e.g., MIC ≤ 0.5 mg/liter or MIC > 8 mg/liter) imposes certain limitations on the use of SR. In order to investigate the nature of these limitations, simulations were performed to compare a regression tailored for censored data (censored regression [CR]) and one tailored for an SR. By using a model relating piperacillin-tazobactam MICs against Enterobacter spp. to patient age and hospital bed capacity, 200 simulations of 500 isolates were performed. Various MIC censoring patterns were imposed by using 26 left- or right-censored (L,R) pairs (i.e., MICs ≤ 2 mg/liter L [2 L ] or MICs > 2 mg/liter R [2 R ], respectively). Data were fit by CR and SR for which censored MICs were either (i) excluded, (ii) replaced by 2 L or 2 R , or (iii) replaced by 2 L − 1 or 2 R + 1. Total censoring for the 26 pairs ranged from 7 to 86%. By CR, deviations of average parameter estimates from the true parameter values were <0.10 log2 (mg/liter) for all parameters for each of the 26 pairs. By SR, these deviations were >0.10 log2 (mg/liter) for at least 18 of the 26 pairs for all but one parameter. Two-standard-error confidence intervals for individual parameters contained as little as 0% of cases for all SR approaches but ≥91.5% of cases for the CR approach. When censored MIC data are modeled, CR may reduce or eliminate biased parameter estimates obtained by SR.


2021 ◽  
pp. 001316442110036
Author(s):  
Joseph A. Rios

The presence of rapid guessing (RG) presents a challenge to practitioners in obtaining accurate estimates of measurement properties and examinee ability. In response to this concern, researchers have utilized response times as a proxy of RG and have attempted to improve parameter estimation accuracy by filtering RG responses using popular scoring approaches, such as the effort-moderated item response theory (EM-IRT) model. However, such an approach assumes that RG can be correctly identified based on an indirect proxy of examinee behavior. A failure to meet this assumption leads to the inclusion of distortive and psychometrically uninformative information in parameter estimates. To address this issue, a simulation study was conducted to examine how violations to the assumption of correct RG classification influences EM-IRT item and ability parameter estimation accuracy and compares these results with parameter estimates from the three-parameter logistic (3PL) model, which includes RG responses in scoring. Two RG misclassification factors were manipulated: type (underclassification vs. overclassification) and rate (10%, 30%, and 50%). Results indicated that the EM-IRT model provided improved item parameter estimation over the 3PL model regardless of misclassification type and rate. Furthermore, under most conditions, increased rates of RG underclassification were associated with the greatest bias in ability parameter estimates from the EM-IRT model. In spite of this, the EM-IRT model with RG misclassifications demonstrated more accurate ability parameter estimation than the 3PL model when the mean ability of RG subgroups did not differ. This suggests that in certain situations it may be better for practitioners to (a) imperfectly identify RG than to ignore the presence of such invalid responses and (b) select liberal over conservative response time thresholds to mitigate bias from underclassified RG.


2021 ◽  
Author(s):  
Joseph Rios

The presence of rapid guessing (RG) presents a challenge to practitioners in obtaining accurate estimates of measurement properties and examinee ability. In response to this concern, researchers have utilized response times as a proxy of RG, and have attempted to improve parameter estimation accuracy by filtering RG responses using popular scoring approaches, such as the Effort-moderated IRT (EM-IRT) model. However, such an approach assumes that RG can be correctly identified based on an indirect proxy of examinee behavior. A failure to meet this assumption leads to the inclusion of distortive and psychometrically uninformative information in parameter estimates. To address this issue, a simulation study was conducted to examine how violations to the assumption of correct RG classification influences EM-IRT item and ability parameter estimation accuracy and compares these results to parameter estimates from the three-parameter logistic (3PL) model, which includes RG responses in scoring. Two RG misclassification factors were manipulated: type (underclassification vs. overclassification) and rate (10%, 30%, and 50%). Results indicated that the EMIRT model provided improved item parameter estimation over the 3PL model regardless of misclassification type and rate. Furthermore, under most conditions, increased rates of RG underclassification were associated with the greatest bias in ability parameter estimates from the EM-IRT model. In spite of this, the EM-IRT model with RG misclassifications demonstrated more accurate ability parameter estimation than the 3PL model when the mean ability of RG subgroups did not differ. This suggests that in certain situations it may be better for practitioners to: (a) imperfectly identify RG than to ignore the presence of such invalid responses, and (b) select liberal over conservative response time thresholds to mitigate bias from underclassified RG.


2009 ◽  
Vol 20 (05) ◽  
pp. 687-699 ◽  
Author(s):  
KAIER WANG ◽  
MEIYING YE

This paper presents particle swarm optimization (PSO) method to solve the parameter estimation problem of the Schottky-barrier diode model. Based on the synthetic and experimental data, we have demonstrated that the proposed method has high parameter estimation accuracy. Besides, the initial guesses for the model parameter values are not required in the PSO method. Also, the performance of the PSO method is compared with that of the genetic algorithm (GA) method. The results indicate that the PSO method outperforms the binary-coded and real-coded GA methods in terms of estimation accuracy and computation efficiency.


Author(s):  
Jacob Laurel ◽  
Sasa Misailovic

AbstractProbabilistic Programming offers a concise way to represent stochastic models and perform automated statistical inference. However, many real-world models have discrete or hybrid discrete-continuous distributions, for which existing tools may suffer non-trivial limitations. Inference and parameter estimation can be exceedingly slow for these models because many inference algorithms compute results faster (or exclusively) when the distributions being inferred are continuous. To address this discrepancy, this paper presents Leios. Leios is the first approach for systematically approximating arbitrary probabilistic programs that have discrete, or hybrid discrete-continuous random variables. The approximate programs have all their variables fully continualized. We show that once we have the fully continuous approximate program, we can perform inference and parameter estimation faster by exploiting the existing support that many languages offer for continuous distributions. Furthermore, we show that the estimates obtained when performing inference and parameter estimation on the continuous approximation are still comparably close to both the true parameter values and the estimates obtained when performing inference on the original model.


2020 ◽  
pp. 001316442094989
Author(s):  
Joseph A. Rios ◽  
James Soland

As low-stakes testing contexts increase, low test-taking effort may serve as a serious validity threat. One common solution to this problem is to identify noneffortful responses and treat them as missing during parameter estimation via the effort-moderated item response theory (EM-IRT) model. Although this model has been shown to outperform traditional IRT models (e.g., two-parameter logistic [2PL]) in parameter estimation under simulated conditions, prior research has failed to examine its performance under violations to the model’s assumptions. Therefore, the objective of this simulation study was to examine item and mean ability parameter recovery when violating the assumptions that noneffortful responding occurs randomly (Assumption 1) and is unrelated to the underlying ability of examinees (Assumption 2). Results demonstrated that, across conditions, the EM-IRT model provided robust item parameter estimates to violations of Assumption 1. However, bias values greater than 0.20 SDs were observed for the EM-IRT model when violating Assumption 2; nonetheless, these values were still lower than the 2PL model. In terms of mean ability estimates, model results indicated equal performance between the EM-IRT and 2PL models across conditions. Across both models, mean ability estimates were found to be biased by more than 0.25 SDs when violating Assumption 2. However, our accompanying empirical study suggested that this biasing occurred under extreme conditions that may not be present in some operational settings. Overall, these results suggest that the EM-IRT model provides superior item and equal mean ability parameter estimates in the presence of model violations under realistic conditions when compared with the 2PL model.


2020 ◽  
Vol 48 (12) ◽  
pp. 2809-2820
Author(s):  
Ramesh Perumal ◽  
Vincent Vigneron ◽  
Chi-Fen Chuang ◽  
Yen-Chung Chang ◽  
Shih-Rung Yeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document