Asymptotic Input-Output Relationship Predicts Electric Field Effect on Sublinear Dendritic Integration of AMPA Synapses

2021 ◽  
pp. 1-37
Author(s):  
Yaqin Fan ◽  
Xile Wei ◽  
Guosheng Yi ◽  
Meili Lu ◽  
Jiang Wang ◽  
...  

Abstract An extracellular electric field (EF) induces transmembrane polarizations on extremely inhomogeneous spaces Evidence shows that EF-induced somatic polarization in pyramidal cells can modulate the neuronal input-output (I/O) function. However, it remains unclear whether and how dendritic polarization participates in the dendritic integration and contributes to the neuronal I/O function. To this end, we built a computational model of a simplified pyramidal cell with multi-dendritic tufts, one dendritic trunk, and one soma to describe the interactions among EF, dendritic integration, and somatic output, in which the EFs were modeled by inserting inhomogeneous extracellular potentials. We aimed to establish the underlying relationship between dendritic polarization and dendritic integration by analyzing the dynamics of subthreshold membrane potentials in response to AMPA synapses in the presence of constant EFs. The model-based singular perturbation analysis showed that the equilibrium mapping of a fast subsystem can serve as the asymptotic subthreshold I/O relationship for sublinear dendritic integration. This allows us to predict the tendency of EF-mediated dendritic integration by showing how EF changes modify equilibrium mapping. EF-induced hyperpolarization of distal dendrites receiving synapses inputs was found to play a key role in facilitating the AMPA receptor-evoked excitatory postsynaptic potential (EPSP) by enhancing the driving force of synaptic inputs. A significantly higher efficacy of EF modulation effect on global AMPA-type dendritic integration was found compared with local AMPA-type dendritic integration. During the generation of an action potential (AP), the relative contribution of EF-modulated dendritic integration and EF-induced somatic polarization was determined to show their collaboration in promoting or inhibiting the somatic excitability, depending on the EF polarity. These findings are crucial for understanding the EF modulation effect on neuronal computation, which provides insight into the modulation mechanism of noninvasive brain modulation.

1979 ◽  
Vol 57 (12) ◽  
pp. 1457-1460 ◽  
Author(s):  
W. A. Corrigall ◽  
M. A. Linseman

The effect of morphine (0.5–50 μM) was examined on CA1 field potentials in the transverse hippocampal slice. Morphine consistently produced an augmentation of orthodromic evoked activity in stratum pyramidale (population spike) manifest as (i) a shift to lower threshold of the entire input–output curve for the neurons which was naloxone reversible near threshold only, and (ii) generation of an additional population spike whose amplitude was proportional to the position of the sampled response on its input–output curve, and which was fully naloxone reversible. Both effects were stereospecific. The phenomena were not accompanied by simultaneous changes in potentials in the dendritic regions (population excitatory postsynaptic potential) of CA1, and only the second effect was observed during antidromic activation of the pyramidal cells. The results indicate the importance of assessing full input–output characteristics of drug effects.


2021 ◽  
Vol 118 (16) ◽  
pp. 162110
Author(s):  
Yujie Quan ◽  
Sheng-Ying Yue ◽  
Bolin Liao

1974 ◽  
Vol 36 (1) ◽  
pp. 179-186 ◽  
Author(s):  
Yoshiro Sasaki ◽  
Chihiro Hamaguchi ◽  
Akihiro Morotani ◽  
Junkichi Nakai

2008 ◽  
Vol 77 (12) ◽  
pp. 124707 ◽  
Author(s):  
Yuji Muro ◽  
Masayuki Nakano ◽  
Kiyoichiro Motoya

2012 ◽  
Vol 516-517 ◽  
pp. 1517-1520
Author(s):  
Jian Xun Hu ◽  
Gong Da Zhang ◽  
Hong Yu Zhang ◽  
Xiao Qin Zhang

Using the finite element analysis, this work analyzed the electric field distribution of 220kV transmission steel tower with double-circuit and composite material transmission tower with the same size, and compared the electric field effect of two materials transmission tower for surroundings. And this work compared the vertical and axial electric field distribution along transmission line of the two materials transmission tower. The results indicate the composite material tower can improve the environment of electric field near the transmission lines.


Sign in / Sign up

Export Citation Format

Share Document