Mechanical Performance and In Vivo Tests of an Acrylic Bone Cement Filled with Bioactive Sepia Officinalis Cuttlebone

2010 ◽  
Vol 21 (1) ◽  
pp. 113-125 ◽  
Author(s):  
S. García-Enriquez ◽  
H. E. R. Guadarrama ◽  
I. Reyes-González ◽  
E. Mendizábal ◽  
C. F. Jasso-Gastinel ◽  
...  
2007 ◽  
Vol 51 (9) ◽  
pp. 3199-3204 ◽  
Author(s):  
Xun-Zi Cai ◽  
Shi-Gui Yan ◽  
Hao-Bo Wu ◽  
Rong-Xin He ◽  
Xue-Song Dai ◽  
...  

ABSTRACT This study sought to investigate the effect of delayed pulsed-wave ultrasound with low frequency on drug release from and the antimicrobial efficacy of vancomycin-loaded acrylic bone cement in vivo and the possible mechanism of this effect. After the implantation of cement and the inoculation of Staphylococcus aureus into the bilateral hips of rabbits, ultrasound (average intensity, 300 mW/cm2; frequency, 46.5 kHz; on/off ratio, 20 min/10 min) was applied to animals in the normal ultrasound group (UG0-12) from 0 through 12 h after surgery and to those in the delayed-ultrasound group (UG12-24) from 12 through 24 h after surgery. The control group (CG) was not exposed to ultrasound. Based on vancomycin concentrations in left hip cavities at projected time intervals, the amount of time during which the local drug concentration exceeded the MIC (T >MIC) in UG12-24 was significantly prolonged compared with that in either CG or UG0-12, and the ratios between the areas under the concentration-time curves over 24 h and the MIC for UG0-12 and UG12-24 were both increased compared with that for CG. The greatest reductions in bacterial densities in both right hip aspirates and right femoral tissues at 48 h were achieved with UG12-24. Local hemorrhage in rabbits of UG0-12 during the 12-h insonation was more severe than that in rabbits of UG12-24. Of four variables, the T >MIC and the bioacoustic effect were both identified as parameters predictive of the enhancement of the antimicrobial efficacy of cement by ultrasound. Sustained concentrations above the MIC replaced early high maximum concentrations and long-term subtherapeutic release of the drug, provided that ultrasound was not applied until local hemorrhage was relieved. The enhancement of the antimicrobial efficacy of cement by ultrasound may be attributed to the prolonged T >MIC and the bioacoustic effect caused by ultrasound.


1985 ◽  
Vol 55 ◽  
Author(s):  
Alan S. Litsky ◽  
Robert M. Rose ◽  
Clinton T. Rubin

ABSTRACTLoosening is the dominant long-term problem facing joint replacement surgeons and patients. A probable cause of endoprosthesis loosening is the strain singularity at the material interfaces. The concentration of shear at the bone-cement interface leads to micromotion which precipitates a soft-tissue membrane and resorption of the cancellous bone.A more compliant cement would substantially reduce the interfacial stresses and serve as a “pillow” between the prosthetic stem and the cancellous bone. We have developed a surgically-workable formulation of a reduced modulus acrylic bone cement — polybutylmethylmethacrylate (PBMMA) — to test this hypothesis. Materials property testing and in vivo implantation are discussed.


2007 ◽  
Vol 361-363 ◽  
pp. 1001-1004 ◽  
Author(s):  
Barbara Bracci ◽  
Milena Fini ◽  
Silvia Panzavolta ◽  
Paola Torricelli ◽  
Adriana Bigi

We recently developed a new biomimetic calcium phosphate bone cement enriched with gelatin (GEL-CP) which exhibits improved mechanical properties with respect to the control cement (C-CP) and a good response to osteoblast-like cells. In this work, we have extended the investigation to primary culture of osteoblasts derived from normal (N-OB) and osteopenic (O-OB) sheep bones cultured on samples of GEL-CP, and their behavior was compared to that of cells cultured on C-CP as control. Cell morphology, proliferation, and differentiation were evaluated at 3 and 7 days. Preliminary in vivo tests were carried out onto critical size defects in the radius diaphysis of rats.


1986 ◽  
Vol 4 (1) ◽  
pp. 86-89 ◽  
Author(s):  
W. L. Bargar ◽  
S. A. Brown ◽  
H. A. Paul ◽  
T. Voegli ◽  
Y. Hseih ◽  
...  

2011 ◽  
Vol 21 (S6) ◽  
pp. 800-809 ◽  
Author(s):  
Sophie Verrier ◽  
Lisa Hughes ◽  
Antoine Alves ◽  
Marianna Peroglio ◽  
Mauro Alini ◽  
...  

Biomaterials ◽  
2006 ◽  
Vol 27 (2) ◽  
pp. 256-261 ◽  
Author(s):  
M RIES ◽  
E YOUNG ◽  
L ALMARASHI ◽  
P GOLDSTEIN ◽  
A HETHERINGTON ◽  
...  

2020 ◽  
Vol 17 (1) ◽  
pp. 33-39
Author(s):  
Karen C. Vargas-Castro ◽  
Ana M. Puebla Pérez ◽  
Irma I. Rangel-Salas ◽  
Jorge I. Delgado-Saucedo ◽  
José B. Pelayo-Vázquez ◽  
...  

Background: In the therapy of cancer, several treatments have been designed using nanomaterials, among which gold nanoparticles (AuNPs) have been featured as a promising antitumoral agent. Our research group has developed the synthesis of gold nanoparticles L-AuNPs and D-AuNPs stabilized with zwitterions of imidazolium (L-1 and D-1) derived from L-methionine and D-methionine. Because the stabilizer agent is chiral, we observed through circular dichroism that AuNPs also present chirality; such chirality as well as the fact that the stabilizing agent contains fragments of methionine and imidazolium that are commonly involved in biological processes, opens up the possibility that this system may have biological compatibility. Additionally, the presence of methionine in the stabilizing agent opens the application of this system as a possible antitumor agent because methionine is involved in methylation processes of molecules such as DNA. Objective: The aim of this research is the evaluation of the antitumor activity of gold nanoparticles stabilized with zwitterions of imidazolium (L-AuNPs) derived from L-methionine in the model of BALB/c mice with lymphoma L5178Y. Methods: Taking as a parameter cell density, the evaluation of the inhibitory effect of L-AuNPs was carried out with a series of in vivo tests in BALB/c type mice; three groups of five mice each were formed (Groups 1, 2 and 3); all mice were i.p. inoculated with the lymphoblast murine L5178Y. Group 1 consisted of mice without treatment. In the Groups 2 and 3 the mice were treated with L-AuNPs at 0.3 mg/Kg on days 1, 7 and 14 by orally and intraperitonally respectively. Results: These results show low antitumor activity of these gold nanoparticles (L-NPsAu) but interestingly, the imidazolium stabilizing agent of gold nanoparticle (L-1) displayed promising antitumor activity. On the other hand, the enantiomer of L-1, (D-1) as well as asymmetric imidazole derivate from L-methionine (L-2), do not exhibit the same activity as L-1. Conclusion: The imidazolium stabilizing agent (L-1) displayed promising antitumor activity. Modifications in the structure of L-1 showed that, the stereochemistry (like D-1) and the presence of methionine fragments (like L-2) are determinants in the antitumor activity of this compound.


1995 ◽  
Vol 23 (4) ◽  
pp. 491-496
Author(s):  
Hanna Tähti ◽  
Leila Vaalavirta ◽  
Tarja Toimela

— There are several hundred industrial chemicals with neurotoxic potential. The neurotoxic risks of most of these chemicals are unknown. Additional methods are needed to assess the risks more effectively and to elucidate the mechanisms of neurotoxicity more accurately than is possible with the conventional methods. This paper deals with general tasks concerning the use of in vitro models in the evaluation of neurotoxic risks. It is based on our previous studies with various in vitro models and on recent literature. The induction of glial fibrillary acidic protein in astrocyte cultures after treatment with known neurotoxicants (mercury compounds and aluminium) is discussed in more detail as an important response which can be detected in vitro. When used appropriately with in vivo tests and with previous toxicological data, in vitro neurotoxicity testing considerably improves risk assessment. The incorporation of in vitro tests into the early stages of risk evaluation can reduce the number of animals used in routine toxicity testing, by identifying chemicals with high neurotoxic potential.


Sign in / Sign up

Export Citation Format

Share Document