Corrosive Effects: Environmental Ethics and the Metaphysics of Acid Mine Drainage

2001 ◽  
Vol 31 (1) ◽  
pp. 156-172
Author(s):  
Robert Frodeman

AbstractEnvironmentally we seem to be both the victims and the perpetrators of a type of bait and switch: lured into the discussion by one set of intuitions, our interests become redescribed in terms that are intellectually more respectable. Our deepest concerns with the environment are converted into foreign discourses, as we strain to make the languages of science, economics, and interest group politics express our intuitions. The circumscription of environmental philosophy within environmental ethics is one manifestation of this process of bait and switch. 'Corrosive Effects' critiques this process through a case study of acid mine drainage-water pollution resulting from mining activities. An analysis of acid mine drainage reveals the metaphysical and theological roots of many of our environmental problems.

2006 ◽  
Vol 43 (11) ◽  
pp. 1167-1179 ◽  
Author(s):  
M Paradis ◽  
J Duchesne ◽  
A Lamontagne ◽  
D Isabel

Acid mine drainage (AMD) is an environmental problem produced when sulphides come in contact with an oxidant (± bacteria) and water, producing acid generation and metals leaching. One solution proposed is to use red mud bauxite (RMB), which is very alkaline, to neutralize oxidized acidic tailings. A column leaching test has been set up to evaluate major aspects of field constraints. First, a field investigation was conducted in which RMB was spread in aggregates before mixing with tailings. This setup has been reproduced in the laboratory and compared with a homogeneous mixture. The analyses of the water effluent do not show any important difference between the two mixtures. Second, some studies show that the addition of Cl brine to RMB helps to maintain the long-term neutralization potential. Brine addition increased the concentrations of Ca, Mg, Na, K, and Cu in drainage water. Columns were set up with 10% and 20% RMB to evaluate the effect of the quantity applied. Addition of greater than 20% RMB increases the leachate alkalinity and concentrations of Al, Cu, Pb, As, Fe, and SO42– in drainage waters. The addition of 10% RMB, however, significantly improves the quality of drainage water over a period of 125 days and results in concentrations and pH values within the ranges of those recommended by Directive 019 of the Ministère de l'environnement, Québec.Key words: acid mine drainage, red mud bauxite, tailings, environmental geochemistry, neutralization.


2018 ◽  
Vol 73 ◽  
pp. 05009
Author(s):  
Hardyanti Nurandani ◽  
Utomo Sudarno ◽  
Oktaviana Angelica ◽  
Serafina Katrin ◽  
Junaidi Junaidi

Sulphur dioxide gas is one of most contaminating gas in the air. Sulphur gas can be produced by mining activities. Sulphur gas will be harmful if bond with CO2 to form as Sulphur Dioxide. To reduce the Sulphur Dioxide gas concentration we must inhibite the sulphur gas formation from mining activities. The inhibition of sulphur gas could be done by reduce the sulphate concentration in acid mine drainage. One of important factor that influencing the reduce of sulphate is COD/SO42- ratio. The effect of COD/SO42- ratio on bacterial growth and sulfate removal process can be investigated with anaerobic batch reactor. The laundry septic tank sediments were inoculated on an anaerobic batch reactor which were contacted with artificial coal acid mine water wastes with 1000 sulfate concentrations and 2000 mg SO42- /L. In an anaerobic batch reactor there are five reactors with variations of COD / SO42-1.0, 1.5, 2.0, 4.0, and 8.0 ratios. Efficiency ratio and the best sulfate removal rate is in reactor ratio 2.0 with value efficiency of 46.58% and a reduction rate of 29.128 mg / L.day in an anaerobic batch reactor. The efficiency of the removal rate decreased when the COD / SO42->2.0 ratio decreased. The fastest pH decline was in the COD/SO42-8.0 ratio variation in the anaerobic batch reactor and. The COD / SO42-ratio can help the sulfate reduction process in the optimum value by affecting the sulfate-reducing bacterial metabolism in the balance of the acceptor and the electron donor.


2011 ◽  
Vol 102 (2) ◽  
pp. 683-689 ◽  
Author(s):  
Erkan Sahinkaya ◽  
Fatih M. Gunes ◽  
Deniz Ucar ◽  
Anna H. Kaksonen

Sign in / Sign up

Export Citation Format

Share Document