TENSION WOOD-LIKE REACTION WOOD IN VESSEL-LESS TETRACENTRON SINENSE

IAWA Journal ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 372-382 ◽  
Author(s):  
H. Aiso ◽  
F. Ishiguri ◽  
T. Ohkubo ◽  
S. Yokota

The objective of this study is to clarify the anatomical characteristics and lignin distribution of reaction wood in a vessel-less angiosperm species, Tetracentron sinense Oliv. Sample disks (1 cm in thickness) were collected from three different positions of a Tetracentron sinense tree. Cell morphologies, the microfibril angle (MFA) in the S2 layer, lignin distribution, and lignin content were measured. There was neither a gelatinous (G-)layer nor an S3 layer on the upper side of inclined samples. However, the secondary wall of the normal tracheids was only weakly stained by Mäule and phloroglucinol-HCl. MFA in the S2 layer and lignin content decreased on the upper side of inclined samples. This qualifies the reaction wood of Tetracentron as “tension wood-like”. The so-called “unusual tracheids”, typical for the wood of Tetracentron, showed weaker changes in their anatomical and chemical characteristics in reaction wood than normal tracheids, indicating their special function in water transport. It is hypothesized that vessel-less angiosperms rich in syringyl units in their lignin, produce tension wood-like reaction wood on the upper side of inclined stems or branches, with lower MFA and lignin content in their normal tracheid walls, irrespective of whether a typical G-layer is formed or not.

IAWA Journal ◽  
2013 ◽  
Vol 34 (3) ◽  
pp. 263-272 ◽  
Author(s):  
Haruna Aiso ◽  
Tokiko Hiraiwa ◽  
Futoshi Ishiguri ◽  
Kazuya Iizuka ◽  
Shinso Yokota ◽  
...  

Anatomical characteristics and lignin distribution of ‘compression-wood-like reaction wood’ in Gardenia jasminoides Ellis were investigated. Two coppiced stems of a tree were artificially inclined to form reaction wood (RW). One stem of the same tree was fixed straight as a control, and referred to as normal wood (NW). Excessive positive values of surface-released strain were measured on the underside of RW stems. Anatomical characteristics of xylem formed on the underside of RW and in NW stems were also observed. The xylem formed on the underside exhibited a lack of S3 layer in the secondary fibre walls, an increase of pit aperture angle in the S2 layer, and an increase in lignin content. Some of the anatomical characteristics observed in the underside xylem resembled compression wood in gymnosperms. These results suggest that the increase of microfibril angle in the secondary wall and an increase in lignin content in angiosperms might be common phenomena resembling compression wood of gymnosperms.


1955 ◽  
Vol 3 (2) ◽  
pp. 177 ◽  
Author(s):  
AB Wardrop ◽  
HE Dadswell

The cell wall organization, the cell wall texture, and the degree of lignification of tension wood fibres have been investigated in a wide variety of temperate and tropical species. Following earlier work describing the cell wall structure of tension wood fibres, two additional types of cell wall organization have been observed. In one of these, the inner thick "gelatinous" layer which is typical of tension wood fibres exists in addition to the normal three-layered structure of the secondary wall; in the other only the outer layer of the secondary wall and the thick gelatinous layer are present. In all the tension wood examined the micellar orientation in the inner gelatinous layer has been shown to be nearly axial and the cellulose of this layer found to be in a highly crystalline state. A general argument is presented as to the meaning of differences in the degree, of crystallinity of cellulose. The high degree of crystallinity of cellulose in tension wood as compared with normal wood is attributed to a greater degree of lateral order in the crystalline regions of tension wood, whereas the paracrystalline phase is similar in both cases. The degree of lignification in tension wood fibres has been shown to be extremely variable. However, where the degree of tension wood development is marked as revealed by the thickness of the gelatinous layer the lack of lignification is also most marked. Severity of tension wood formation and lack of lignification have also been correlated with the incidence of irreversible collapse in tension wood. Such collapse can occur even when no whole fibres are present, e.g. in thin cross sections. Microscopic examination of collapsed samples of tension wood has led to the conclusion that the appearance of collapse in specimens containing tendon wood can often be attributed in part to excessive shrinkage associated with the development of fissures between cells, although true collapse does also occur. Possible explanations of the irreversible shrinkage and collapse of tension wood fibres are advanced.


IAWA Journal ◽  
2014 ◽  
Vol 35 (4) ◽  
pp. 463-475 ◽  
Author(s):  
Tokiko Hiraiwa ◽  
Haruna Aiso ◽  
Futoshi Ishiguri ◽  
Yuya Takashima ◽  
Kazuya Iizuka ◽  
...  

The anatomical and chemical characteristics of reaction wood (RW) were investigated in Liriodendron tulipifera Linn. Stems of seedlings were artificially inclined at angles of 30 (RW-30), 50 (RW-50) and 70° (RW-70) from the vertical, and compared with normal wood (NW) from a vertical seedling stem. The smallest values for the wood fibre length and vessel number were observed in RW-50. The pit aperture angle was less than 10° in RW-30 and RW-50, in which reduced lignin content was observed in the S2 layer of the wood fibres. An increase in the glucose content and a decrease in the lignin and xylose content was observed in RW-50. The stem inclination angle affected the degree of RW development with regard to anatomical and chemical characteristics: the severest RW was observed in RW-50, followed by RW-30. RW-70 was similar in anatomical and chemical characteristics to NW, apparently because the inclination was too strong to enable recovery of its original position. In this case a vertical sprouting stem was formed to replace the inclined stem.


IAWA Journal ◽  
2014 ◽  
Vol 35 (2) ◽  
pp. 116-126 ◽  
Author(s):  
Haruna Aiso ◽  
Futoshi Ishiguri ◽  
Yuya Takashima ◽  
Kazuya Iizuka ◽  
Shinso Yokota

Anatomy and lignin distribution in artificially inclined stems of Sarcandra glabra were investigated to clarify the characteristics of reaction wood (RW) in a vessel-less angiosperm species. Of the five coppiced stems studied from a single tree, two stems were fixed straight and classified as normal wood (NW) and the remaining three stems were inclined at 50 degrees from the vertical to induce the formation of the RW. Compared with NW, the lower side of the inclined samples had a relatively high compressive surface-released strain and an increase in the microfibril angle of the S2 layer of tracheids. However, no significant change was observed in the length or cell wall thickness of the tracheids. The results of Wiesner and Mäule colour reactions indicated that the amount of guaiacyl lignin in the cell walls of tracheids was increased in RW. It appears that RW in Sarcandra is formed on the lower side of inclined stems, and its anatomical characteristics and chemical composition are similar to those of the compression wood (CW) found in gymnosperm species (the so-called “CW-like RW” type).


Holzforschung ◽  
2016 ◽  
Vol 70 (7) ◽  
pp. 593-602 ◽  
Author(s):  
Deded Sarip Nawawi ◽  
Wasrin Syafii ◽  
Takuya Akiyama ◽  
Yuji Matsumoto

Abstract Gnetum gnemon L. is a unique gymnosperm species showing angiosperm-like features in terms of its morphology and chemical composition of the cell wall. Xylan is the main hemicellulose component, and its lignin is primarily composed of syringyl (S) and guaiacyl (G) units and small amounts of p-hydroxyphenyl (H) units. In the present study, in addition to branch, root, bark, and leaf samples, the reaction wood (RW) taken from the leaning stem of G. gnemon, was investigated mainly by alkaline nitrobenzene oxidation, ozonation and NMR spectroscopy. The leaning stem was wider on the lower side of the wood stem (lsW) than on the upper side (usW), similar to the case for compression wood (CW) in gymnosperms. The usW contained lignin with a higher S/G ratio, and β-O-4 structure had a higher erythro/threo ratio, while both ratios decreased around the periphery of the stem towards the lsW. The lignin content was higher towards the lsW. Overall, the lignin composition in the RW of this tree was similar to that in the tension wood of angiosperms. The H-units were minor components in the lignin, but the content was higher towards the lsW, which resembles the distribution of the H-units in a gymnosperm CW.


Holzforschung ◽  
2007 ◽  
Vol 61 (5) ◽  
pp. 548-557 ◽  
Author(s):  
Vincent Placet ◽  
Joëlle Passard ◽  
Patrick Perré

Abstract The viscoelastic properties of wood have been investigated with a dynamic mechanical analyser specifically developed for wooden materials, the WAVET device. Measurements were carried out on four wood species in the temperature range 0–100°C at frequencies varying between 5 mHz and 10 Hz. Wood samples were tested under water-saturated conditions in the radial and tangential directions. As expected, the radial direction always revealed a higher storage modulus than the tangential direction. Great differences were also observed in the loss factor. The tanδ peak and internal friction were higher in the tangential than in the radial direction. This behaviour is attributed to the fact that anatomical elements act as a function of the direction. The viscoelastic behaviour of reaction wood differs from that of normal or opposite wood. Compression wood of spruce, which has a higher lignin content, is denser and stiffer in transverse directions than normal wood, and has a lower softening temperature (T g). In tension wood, the G-layer is weakly attached to the rest of the wall layers. This may explain why the storage modulus and softening temperature of tension wood are lower than those for opposite wood. We also demonstrate that the time-temperature equivalence fits only around the transition region, i.e., between T g and T g+30°C. Apart from these regions, the response of wood reflects the combined effects of all its constitutive polymers, so that the equivalence is no longer valid.


Holzforschung ◽  
2014 ◽  
Vol 68 (7) ◽  
pp. 791-798 ◽  
Author(s):  
Nanna Bjerregaard Pedersen ◽  
Uwe Schmitt ◽  
Gerald Koch ◽  
Claus Felby ◽  
Lisbeth Garbrecht Thygesen

Abstract The lignin distribution in poles of waterlogged archaeological Picea abies (L.) Karst, which was decayed by erosion bacteria (EB) under anoxic conditions for approximately 400 years, was topochemically identified by transmission electron microscopy (TEM) and high resolution UV-microspectrophotometry (UMSP). Lignin rich cell wall compartments such as cell corner (CC), compound middle lamella (CML), torus, initial pit border and mild compression wood (CW) appeared morphologically well preserved together with S1 and S3 layers and epithelial and ray parenchyma cells. Residual material (RM) from degraded S2 showed a varied lignin distribution as evidenced by the different local UV-absorbance intensities. However, evaluation of UV-absorbance line spectra of RM revealed no change in conjugation of the aromatic ring system. Presence of RM with both very low and very high lignin absorbances showed evidence for disassembly of lignin during degradation combined with aggregation of lignin fragments and physical movement of these fractions. In contrast to TEM analysis, locally decreasing lignin content was found by UMSP in CML regions.


2012 ◽  
Vol 36 (6) ◽  
pp. 1163-1172 ◽  
Author(s):  
María Graciela Aguayo ◽  
Regis Teixeira Mendonça ◽  
Paulina Martínez ◽  
Jaime Rodríguez ◽  
Miguel Pereira

Tension (TW) and opposite wood (OW) of Eucalyptus globulus trees were analyzed for its chemical characteristics and Kraft pulp production. Lignin content was 16% lower and contained 32% more syringyl units in TW than in OW. The increase in syringyl units favoured the formation of β-O-4 bonds that was also higher in TW than in OW (84% vs. 64%, respectively). The effect of these wood features was evaluated in the production of Kraft pulps from both types of wood. At kappa number 16, Kraft pulps obtained from TW demanded less active alkali in delignification and presented slightly higher or similar pulp yield than pulps made with OW. Fiber length, coarseness and intrinsic viscosity were also higher in tension than in opposite pulps. When pulps where refined to 30°SR, TW pulps needed 18% more revolutions in the PFI mill to achieve the same beating degree than OW pulps. Strength properties (tensile, tear and burst indexes) were slightly higher or similar in tension as compared with opposite wood pulps. After an OD0(EO)D1 bleaching sequence, both pulps achieved up to 89% ISO brightness. Bleached pulps from TW presented higher viscosity and low amount of hexenuronic acids than pulps from OW. Results showed that TW presented high xylans and low lignin content that caused a decrease in alkali consumption, increase pulp strength properties and similar bleaching performance as compared with pulps from OW.


2018 ◽  
Vol 64 (6) ◽  
pp. 872-879 ◽  
Author(s):  
Haruna Aiso-Sanada ◽  
Futoshi Ishiguri ◽  
Denny Irawati ◽  
Imam Wahyudi ◽  
Shinso Yokota

2016 ◽  
Vol 40 (6) ◽  
pp. 1099-1107
Author(s):  
Letícia Maria Alves Ramos ◽  
João Vicente de Figueiredo Latorraca ◽  
Thayanne Caroline Castor Neto ◽  
Letícia Souza Martins ◽  
Elias Taylor Durgante Severo

ABSTRACT Tension wood is an important anatomical structure for its participation in the orientation of the trunk and the architecture of the branches as a function of structural reinforcement. However, its presence in large amounts significantly affects the technological properties of wood, just as in the rubber tree. Nevertheless, there is still demand for information about the origin, distribution and structural features in this species. Thus, this study aims to characterize the cellular structures in tension and opposite wood in Hevea brasiliensis (rubber tree), as well as its radial and longitudinal distribution. Discs at the base and the middle of the commercial logs were collected from three trees in a commercial plantation located in Tabapoã - SP. Tangential diameter of vessels, fiber length (gelatinous and non-gelatinous fibers), microfibril angle and proportionality of cellular elements (vessels, axial parenchyma, ray, gelatinous fibers and non-gelatinous fibers) were measured, and influence of gelatinous fiber presence in vessel diameter was observed. Gelatinous fibers were observed in the two types of wood and in the two trunk heights. Both types of wood were distinguished by gelatinous fiber length and the proportion of axial parenchyma. The tension wood in mid-trunk was the most different, with long gelatinous fibers and less abundant, larger vessel diameter and vessel proportion. Moreover, smaller vessel diameter was observed in the regions with a high proportion of gelatinous fibers, suggesting that the plant invests more support than in liquid transport.


Sign in / Sign up

Export Citation Format

Share Document