ANATOMY AND LIGNIN DISTRIBUTION OF “COMPRESSION-WOOD-LIKE REACTION WOOD” IN GARDENIA JASMINOIDES

IAWA Journal ◽  
2013 ◽  
Vol 34 (3) ◽  
pp. 263-272 ◽  
Author(s):  
Haruna Aiso ◽  
Tokiko Hiraiwa ◽  
Futoshi Ishiguri ◽  
Kazuya Iizuka ◽  
Shinso Yokota ◽  
...  

Anatomical characteristics and lignin distribution of ‘compression-wood-like reaction wood’ in Gardenia jasminoides Ellis were investigated. Two coppiced stems of a tree were artificially inclined to form reaction wood (RW). One stem of the same tree was fixed straight as a control, and referred to as normal wood (NW). Excessive positive values of surface-released strain were measured on the underside of RW stems. Anatomical characteristics of xylem formed on the underside of RW and in NW stems were also observed. The xylem formed on the underside exhibited a lack of S3 layer in the secondary fibre walls, an increase of pit aperture angle in the S2 layer, and an increase in lignin content. Some of the anatomical characteristics observed in the underside xylem resembled compression wood in gymnosperms. These results suggest that the increase of microfibril angle in the secondary wall and an increase in lignin content in angiosperms might be common phenomena resembling compression wood of gymnosperms.

IAWA Journal ◽  
2014 ◽  
Vol 35 (4) ◽  
pp. 463-475 ◽  
Author(s):  
Tokiko Hiraiwa ◽  
Haruna Aiso ◽  
Futoshi Ishiguri ◽  
Yuya Takashima ◽  
Kazuya Iizuka ◽  
...  

The anatomical and chemical characteristics of reaction wood (RW) were investigated in Liriodendron tulipifera Linn. Stems of seedlings were artificially inclined at angles of 30 (RW-30), 50 (RW-50) and 70° (RW-70) from the vertical, and compared with normal wood (NW) from a vertical seedling stem. The smallest values for the wood fibre length and vessel number were observed in RW-50. The pit aperture angle was less than 10° in RW-30 and RW-50, in which reduced lignin content was observed in the S2 layer of the wood fibres. An increase in the glucose content and a decrease in the lignin and xylose content was observed in RW-50. The stem inclination angle affected the degree of RW development with regard to anatomical and chemical characteristics: the severest RW was observed in RW-50, followed by RW-30. RW-70 was similar in anatomical and chemical characteristics to NW, apparently because the inclination was too strong to enable recovery of its original position. In this case a vertical sprouting stem was formed to replace the inclined stem.


IAWA Journal ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 372-382 ◽  
Author(s):  
H. Aiso ◽  
F. Ishiguri ◽  
T. Ohkubo ◽  
S. Yokota

The objective of this study is to clarify the anatomical characteristics and lignin distribution of reaction wood in a vessel-less angiosperm species, Tetracentron sinense Oliv. Sample disks (1 cm in thickness) were collected from three different positions of a Tetracentron sinense tree. Cell morphologies, the microfibril angle (MFA) in the S2 layer, lignin distribution, and lignin content were measured. There was neither a gelatinous (G-)layer nor an S3 layer on the upper side of inclined samples. However, the secondary wall of the normal tracheids was only weakly stained by Mäule and phloroglucinol-HCl. MFA in the S2 layer and lignin content decreased on the upper side of inclined samples. This qualifies the reaction wood of Tetracentron as “tension wood-like”. The so-called “unusual tracheids”, typical for the wood of Tetracentron, showed weaker changes in their anatomical and chemical characteristics in reaction wood than normal tracheids, indicating their special function in water transport. It is hypothesized that vessel-less angiosperms rich in syringyl units in their lignin, produce tension wood-like reaction wood on the upper side of inclined stems or branches, with lower MFA and lignin content in their normal tracheid walls, irrespective of whether a typical G-layer is formed or not.


IAWA Journal ◽  
2004 ◽  
Vol 25 (3) ◽  
pp. 253-271 ◽  
Author(s):  
Lloyd A. Donaldson ◽  
Jenny Grace ◽  
Geoff M. Downes

Two trees of radiata pine, one showing severe lean, the other growing almost vertically, were assessed for the presence and anatomical properties of compression wood, including anatomy, lignin distribution, microfibril angle, basic density, radial and tangential lumen diameter and cell wall thickness. Both trees contained significant amounts of compression wood although the severity and amount of compression wood was greater in the leaning tree. Changes in lignin distribution seem to be characteristic of the mildest forms of compression wood with reduced lignification of the middle lamella representing the earliest change observed from normal wood. An increase in microfibril angle was associated with both mild and severe compression wood although examples of severe compression wood with the same or smaller microfibril angles than opposite wood, or with very small microfibril angles, were found. When segregated into mild and severe compression wood the average difference in microfibril angle was 4° and 8° respectively compared with opposite wood. Within-ring distribution of microfibril angle was different in severe compression wood compared to opposite wood with higher angles in the latewood.Severe compression wood showed a 22% increase in basic density compared to mild compression wood and opposite wood. The increased density was accounted for in terms of a 26% increase in tracheid wall thickness throughout the growth ring, offset by a 9% increase in radial lumen diameter, slightly greater in the latewood. There were no significant changes in density or cell dimensions in mild compression wood compared with opposite wood.


IAWA Journal ◽  
2014 ◽  
Vol 35 (2) ◽  
pp. 116-126 ◽  
Author(s):  
Haruna Aiso ◽  
Futoshi Ishiguri ◽  
Yuya Takashima ◽  
Kazuya Iizuka ◽  
Shinso Yokota

Anatomy and lignin distribution in artificially inclined stems of Sarcandra glabra were investigated to clarify the characteristics of reaction wood (RW) in a vessel-less angiosperm species. Of the five coppiced stems studied from a single tree, two stems were fixed straight and classified as normal wood (NW) and the remaining three stems were inclined at 50 degrees from the vertical to induce the formation of the RW. Compared with NW, the lower side of the inclined samples had a relatively high compressive surface-released strain and an increase in the microfibril angle of the S2 layer of tracheids. However, no significant change was observed in the length or cell wall thickness of the tracheids. The results of Wiesner and Mäule colour reactions indicated that the amount of guaiacyl lignin in the cell walls of tracheids was increased in RW. It appears that RW in Sarcandra is formed on the lower side of inclined stems, and its anatomical characteristics and chemical composition are similar to those of the compression wood (CW) found in gymnosperm species (the so-called “CW-like RW” type).


Holzforschung ◽  
2016 ◽  
Vol 70 (3) ◽  
pp. 267-274 ◽  
Author(s):  
Tatsuya Shirai ◽  
Hiroyuki Yamamoto ◽  
Miyuki Matsuo ◽  
Mikuri Inatsugu ◽  
Masato Yoshida ◽  
...  

Abstract Ginkgo (Ginkgo biloba L.) forms thick, lignified secondary xylem in the cylindrical stem as in Pinales (commonly called conifers), although it has more phylogenetic affinity to Cycadales than to conifers. Ginkgo forms compression wood-like (CW-like) reaction wood (RW) in its inclined stem as it is the case in conifers. However, the distribution of growth stress is not yet investigated in the RW of ginkgo, and thus this tissue resulting from negative gravitropism is still waiting for closer consideration. The present study intended to fill this gap. It has been demonstrated that, indeed, ginkgo forms RW tissue on the lower side of the inclined stem, where the compressive growth stress (CGS) was generated. In the RW, the micorofibril angle in the S2 layer, the air-dried density, and the lignin content increased, whereas the cellulose content decreased. These data are quite similar to those of conifer CWs. The multiple linear regression analysis revealed that the CGS is significantly correlated by the changes in the aforementioned parameters. It can be safely concluded that the negative gravitropism of ginkgo is very similar to that of conifers.


IAWA Journal ◽  
2004 ◽  
Vol 25 (4) ◽  
pp. 415-423 ◽  
Author(s):  
Jonas Brändström

The ultrastructural organization of the outer layer of the secondary wall (i.e. S1 layer) of Norway spruce (Picea abies (L.) Karst.) compression wood tracheids was investigated with emphasis on the microfibril angle. Light microscopy was used to study the orientation of soft rot cavities (viz. microfibril angle) in compression wood tracheids from macerated soft rot degraded wood blocks. In addition, surface and fracture characteristics of compression wood tracheids selected from a thermomechanical pulp were investigated using scanning electron microscopy (SEM). Results showed that the orientation of soft rot cavities varied little between tracheids and the angles were also consistent along the length of individual tracheids. The average S1 microfibril angle in two selected annual rings was 90.0° ± 2.7° and 88.9° ± 2.4° respectively. SEM observations of the compression wood tracheids from the pulp showed distinct fractures between S1 and S2 or within S1 and these fractures were oriented perpendicular to the tracheid axis. It was concluded that the microfibril angle of the S1 layer of compression wood tracheids is higher and less variable than normal wood tracheids. This is considered an adaptation for restraining the compressive forces that act on leaning conifer stems or branches.


Holzforschung ◽  
2020 ◽  
Vol 74 (5) ◽  
pp. 459-467 ◽  
Author(s):  
Hui Peng ◽  
Lennart Salmén ◽  
Jiali Jiang ◽  
Jianxiong Lu

AbstractTo achieve efficient utilization of compression wood (CW), a deeper insight into the molecular interactions is necessary. In particular, the role of lignin in the wood needs to be better understood, especially concerning how lignin contributes to its mechanical properties. For this reason, the properties of CW and normal wood (NW) from Chinese fir (Cunninghamia lanceolata) have been studied on a molecular scale by means of polarized Fourier transform infrared (FTIR) spectroscopy, under both static and dynamic loading conditions. Under static tensile loading, only molecular deformations of cellulose were observed in both CW and NW. No participation of lignin could be detected. In relation to the macroscopic strain, the molecular deformation of the cellulose C-O-C bond was greater in NW than in CW as a reflection of the higher microfibril angle and the lower load taken up by CW. Under dynamic deformation, a larger contribution of the lignin to stress transfer was detected in CW; the molecular deformation of the lignin being highly related to the amplitude of the applied stress. Correlation analysis indicated that there was a direct coupling between lignin and cellulose in CW, but there was no evidence of such a direct coupling in NW.


1999 ◽  
Vol 77 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Lloyd A Donaldson ◽  
Adya P Singh ◽  
Arata Yoshinaga ◽  
Keiji Takabe

Lignin distribution in the tracheid cell wall of mild compression wood in Pinus radiata D. Don was examined by interference microscopy, confocal fluorescence microscopy, and ultraviolet (UV) microscopy. Two anatomically different samples of mild compression wood were compared with a sample of normal wood using quantitative interference microscopy and microdensitometry combined with confocal fluorescence microscopy to estimate the quantitative or semiquantitative lignin distribution in the S2 and S2L regions of the secondary cell wall and of the cell corner middle lamella (CCML). One of these samples was briefly examined by UV microscopy for comparison. Quantitative interference microscopy provided information on lignin concentration in different regions of the cell wall with values of 26, 46, and 57%, respectively, for the S2, S2L, and CCML regions of sample 1 and 20, 29, and 46%, respectively, for the same regions of sample 2. Microdensitometry of confocal fluorescence images provided semiquantitative information on the relative lignin distribution based on lignin autofluorescence. Comparison between the two compression wood samples using autofluorescence gave results that were in partial agreement with interference microscopy with respect to the relative lignification levels in the S2, S2L, and CCML regions. Some improvement was achieved by using calibration values for hemicellulose rather than holocellulose for interference data in the S2L region. Results for UV microscopy performed on sample 1 indicated that the lignification of the CCML region was comparable with that of the S2L region in this sample but with some variation among cells. All three techniques indicated significant variation in lignification levels of the S2L and CCML regions among adjacent cells and a significant reduction in the lignification of the CCML region compared to normal wood.Key words: lignin distribution, interference microscopy; confocal fluorescence microscopy, UV microscopy, mild compression wood, Pinus radiata D. Don.


IAWA Journal ◽  
2010 ◽  
Vol 31 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Clemens M. Altaner ◽  
Michael C. Jarvis ◽  
Jack B. Fisher ◽  
Thomas E. Marler

The molecular structure of tracheid walls of an inclined eccentrically grown stem of Cycas micronesica K.D. Hill did not differ between the upper and lower side. The absence the typical molecular features of compression wood tracheids, i.e. an increased galactose and lignin content as well as an increased microfibril angle, indicated that cycads do not have the ability to form even very mild forms of compression wood, which lacks anatomical features commonly observed in compression wood. Analysis of the sugar monomers in Cycas micronesica tracheids did reveal a rather unique composition of the non-cellulosic polysaccharides for a gymnosperm. The low mannose and high xylose content resembled a cell wall matrix common in angiosperms. The crystalline cellulose structure in Cycas micronesica tracheids closely resembled those of secondary cell walls in Picea sitchensis (Bong.) Carr. tracheids. However, the spacing between the sheets of cellulose chains was wider and the cellulose fibrils appeared to form larger aggregates than in Sitka spruce tracheids.


1952 ◽  
Vol 5 (4) ◽  
pp. 385 ◽  
Author(s):  
ABW Ardrop ◽  
HE Dadswell

Cell division, the nature of extra-cambial readjustment, and the development of the secondary wall in the tracheids of conifer stems have been investigated in both compression wood and normal wood. It has been shown that the reduction in tracheid length, accompanying the development of compression wood and, in normal wood, increased radial growth after suppression, result from an increase in the number of anticlinal divisions in the cambium. From observations of bifurcated and otherwise distorted cell tips in mature tracheids, of small but distinct terminal canals connecting the lumen to the primary wall in the tips of mature tracheids, and of the presence of only primary wall at the tips of partly differentiated tracheids, and from the failure to observe remnants of the parent primary walls at the ends of differentiating tracheids, it has been concluded that extra-cambial readjustment of developing cells proceeds by tip or intrusive growth. It has been further concluded that the development of the secondary wall is progressive towards the cell tips, on the bases of direct observation of secondary wall formation in developing tracheids and of the increase found in the number of turns of the micellar helix per cell with increasing cell length. The significance of this in relation to the submicroscopic organization of the cell wall has been discussed. Results of X-ray examinations and of measurements of� tracheid length in successive narrow tangential zones from the cambium into the xylem have indicated that secondary wall formation begins before the dimensional changes of differentiation are complete.


Sign in / Sign up

Export Citation Format

Share Document