Shared Watercourses and Water Security in South Asia: Challenges of Negotiating and Enforcing Treaties

2018 ◽  
Vol 3 (3) ◽  
pp. 1-100
Author(s):  
Salman M. A. Salman ◽  
Kishor Uprety

AbstractShared water resources have influenced South Asia’s geography and history, as well as riparians’ responses to the challenges of utilizing, managing, and protecting such resources. Because of scarcity, population growth, and climate change impacts on all the riparians, national calls for water security have become louder. Consequently, collaboration among the nations of South Asia for ensuring equitable sharing of such water resources has not been optimal. While most countries do not have reliable systems for data generation, those possessing some hydrological data consider them state secrets, restricting their exchange. Even when treaty obligations exist, data-sharing practices are ad hoc, and the range of information shared is limited. Thus, negotiating new transboundary water treaties amongst South Asia’s riparian countries has become a daunting task, and enforcing existing ones remains a real challenge.

2020 ◽  
Vol 38 (3) ◽  
Author(s):  
Marium Sara Minhas Bandeali

Water governance and management are important challenges for the River Indus Basin in Pakistan. Water governance refers to social, political and economic factors that influence water management. The water scarcity and water security are a major concern for the state to control its water resources. The study aims to give Sindh water policy by exploring the challenges to Indus Basin in managing water resources and to identify opportunities Indus Basin can look to improve water management. Interviews were conducted from water experts and analysts having 5 years’ experience or more in the water sector of Pakistan through a semi-structured self-developed questionnaire using purposive sampling technique and transcripts were analyzed using thematic content analysis. The findings show that increasing population, climatic change and rising demand of water are major challenges Indus is facing and Indus with time is getting water-scarce therefore need strong institutions, civil society and legislatures to ensure equitable distribution of water and maintain the ecosystem. The study emphasizes that water governance and management are necessary for sustainable use of water. Pakistan, the water stress country needs to address ‘governance’ at a wider scale to solve problems in the Indus Basin for the livelihood of people. The research will benefit the state, water experts, institutions as well as civil society to promote efficient use of water in Indus Basin.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 793
Author(s):  
Abdul Razzaq Ghumman ◽  
Mohammed Jamaan ◽  
Afaq Ahmad ◽  
Md. Shafiquzzaman ◽  
Husnain Haider ◽  
...  

The evaporation losses are very high in warm-arid regions and their accurate evaluation is vital for the sustainable management of water resources. The assessment of such losses involves extremely difficult and original tasks because of the scarcity of data in countries with an arid climate. The main objective of this paper is to develop models for the simulation of pan-evaporation with the help of Penman and Hamon’s equations, Artificial Neural Networks (ANNs), and the Artificial Neuro Fuzzy Inference System (ANFIS). The results from five types of ANN models with different training functions were compared to find the best possible training function. The impact of using various input variables was investigated as an original contribution of this research. The average temperature and mean wind speed were found to be the most influential parameters. The estimation of parameters for Penman and Hamon’s equations was quite a daunting task. These parameters were estimated using a state of the art optimization algorithm, namely General Reduced Gradient Technique. The results of the Penman and Hamon’s equations, ANN, and ANFIS were compared. Thirty-eight years (from 1980 to 2018) of manually recorded pan-evaporation data regarding mean daily values of a month, including the relative humidity, wind speed, sunshine duration, and temperature, were collected from three gauging stations situated in Al Qassim, Saudi Arabia. The Nash and Sutcliffe Efficiency (NSE) and Mean Square Error (MSE) evaluated the performance of pan-evaporation modeling techniques. The study shows that the ANFIS simulation results were better than those of ANN and Penman and Hamon’s equations. The findings of the present research will help managers, engineers, and decision makers to sustainability manage natural water resources in warm-arid regions.


2015 ◽  
Vol 19 (12) ◽  
pp. 4783-4810 ◽  
Author(s):  
C. Mathison ◽  
A. J. Wiltshire ◽  
P. Falloon ◽  
A. J. Challinor

Abstract. South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960–2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990–2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow could mean additional water resources for irrigation, the largest usage of water in this region, but has implications in terms of inundation risk. These projected increases could be more than countered by changes in demand due to depleted groundwater, increases in domestic use or expansion of water intense industries. Including missing hydrological processes in the model would make these projections more robust but could also change the sign of the projections.


2017 ◽  
Vol 39 (3) ◽  
pp. 521-544 ◽  
Author(s):  
Joana Castro Pereira ◽  
Miguel Rodrigues Freitas

Abstract Cities have become important actors in international relations, and integral to security and environmental politics. We are living in an increasingly urban world, dominated by human settlements and activities. The central role now played by humans in shaping the planet has led us into an uncertain, unstable, and dangerous geological epoch – the Anthropocene – that poses great and additional challenges to security. Local and global spheres are connected as never before, generating ‘glocal’ issues in which water plays a central role. Water is the element that interconnects the complex web of food, energy, climate, economic growth, and human security. In a rapidly urbanising world, cities influence the hydrological cycle in major but uncertain ways, affecting water resources beyond their boundaries. There is no doubt that these issues are highly relevant to the discipline of International Relations (IR). However, IR scholars have been slow to engage with them, and most academic studies of cities and water security still emanate from the natural sciences. This article examines the ways in which cities in the Anthropocene challenge water security, and why IR needs to reinvent itself if it wants to sustain its contribution to global security.


Sign in / Sign up

Export Citation Format

Share Document