The Valley of Gittit - Landscape Unit 35

Keyword(s):  
2009 ◽  
Vol 13 (suppl) ◽  
pp. 836-839 ◽  
Author(s):  
Lafayette F. Sobral ◽  
Fernando L. D. Cintra ◽  
Jot T. Smyth

Coastal Tableland is a landscape unit in the North East of Brazil in which the main soils are Ultisols. In these soils, a compacted layer denominated "cohesive horizon" occurs and root growth is limited by it. An experiment with five treatments and six replications was set up in order to study how liming and gypsum could improve root depth of orange (Citrus sinensis L. Osbeck) crop in an Ultisol in which a compacted layer was found at 0.3 m. Treatments were: A - No liming and no gypsum; B - Liming to achieve 60% base saturation; C - B + 1 t of gypsum ha-1 ; D - B + 2 t of gypsum ha-1 and E - B + 3 t of gypsum ha-1. Gypsum increased calcium and sulfate in the cohesive horizon. Surface application of lime and gypsum did not cause changes in soil density and total porosity in the cohesive horizon. An improvement of root length was observed at the cohesive horizon.


Soil Research ◽  
1998 ◽  
Vol 36 (2) ◽  
pp. 317 ◽  
Author(s):  
V. Rasiah ◽  
L. A. G. Aylmore

It is known that field-scale variations in subsurface hydraulic characteristics are influenced, to a large extent, by soil properties. Limited information, however, exists on the sensitivity of hydraulic functions to field-scale variations in soil properties. The sensitivity of 4 soil water retention functions, θ(h), to variations in soil properties and changes in bulk density (ρ) across and within soils along a 500-m transect has been assessed in this study. The θ(h) functions compared are those of van Genuchten, Brooks and Corey, Campbell, and Gardner. Water retention characteristics for 7 soils, each packed to 2 relative ρ, were established for each function. The coefficient of determination, R 2 , for the best fit of water retention ranged from 0·79 to 0· 98 for the Gardner and Campbell functions, from 0· 92 to 0·99 for the Brooks and Corey function, and from 0·83 to 0·99 for the van Genuchten function. Simple linear regression analysis indicated the nonlinear slope parameters of the 4 functions were more strongly correlated with soil properties. However, only the van Genuchten slope parameters were sensitive to changes in ρ. No consistency existed between the sensitivity of the linear parameters of the 4 functions and soil properties, and none were sensitive to changes in ρ. Except for the a parameter in the van Genuchten function, all the parameters in this function can be predicted with satisfactory confidence from soil properties and ρ. The results indicate that, of the 4 functions assessed, the van Genuchten θ(h) function is the most sensitive to field-scale variations in soil properties along a transect in a landscape unit and to changes in ρ.


Sign in / Sign up

Export Citation Format

Share Document