Assessment of land degradation in Mediterranean forests and grazing lands using a landscape unit approach and the normalized difference vegetation index

2017 ◽  
Vol 86 ◽  
pp. 8-21 ◽  
Author(s):  
Matteo Jucker Riva ◽  
Ioannis N. Daliakopoulos ◽  
Sandra Eckert ◽  
Elias Hodel ◽  
Hanspeter Liniger
Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 817
Author(s):  
Jesús Julio Camarero ◽  
Michele Colangelo ◽  
Antonio Gazol ◽  
Manuel Pizarro ◽  
Cristina Valeriano ◽  
...  

Windstorms are forest disturbances which generate canopy gaps. However, their effects on Mediterranean forests are understudied. To fill that research gap, changes in tree, cover, growth and soil features in Pinus halepensis and Pinus sylvestris plantations affected by windthrows were quantified. In each plantation, trees and soils in closed-canopy stands and gaps created by the windthrow were sampled. Changes in tree cover and radial growth were assessed by using the Normalized Difference Vegetation Index (NDVI) and dendrochronology, respectively. Soil features including texture, nutrients concentration and soil microbial community structure were also analyzed. Windthrows reduced tree cover and enhanced growth, particularly in the P. halepensis site, which was probably more severely impacted. Soil characteristics were also more altered by the windthrow in this site: the clay percentage increased in gaps, whereas K and Mg concentrations decreased. The biomass of Gram positive bacteria and actinomycetes increased in gaps, but the biomass of Gram negative bacteria and fungi decreased. Soil gaps became less fertile and dominated by bacteria after the windthrow in the P. halepensis site. We emphasize the relevance of considering post-disturbance time recovery and disturbance intensity to assess forest resilience within a multi-scale approach.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3676 ◽  
Author(s):  
Hao Chen ◽  
Xiangnan Liu ◽  
Chao Ding ◽  
Fang Huang

Land degradation is a widespread environmental issue and an important factor in limiting sustainability. In this study, we aimed to improve the accuracy of monitoring human-induced land degradation by using phenological signal detection and residual trend analysis (RESTREND). We proposed an improved model for assessing land degradation named phenology-based RESTREND (P-RESTREND). This method quantifies the influence of precipitation on normalized difference vegetation index (NDVI) variation by using the bivariate linear regression between NDVI and precipitation in pre-growing season and growing season. The performances of RESTREND and P-RESTREND for discriminating land degradation caused by climate and human activities were compared based on vegetation-precipitation relationship. The test area is in Western Songnen Plain, Northeast China. It is a typical region with a large area of degraded drylands. The MODIS 8-day composite reflectance product and daily precipitation data during 2000–2015 were used. Our results showed that P-RESTREND was more effective in distinguishing different drivers of land degradation than the RESTREND. Degraded areas in the Songnen grasslands can be effectively detected by P-RESTREND. Therefore, this modified model can be regarded as a practical method for assessing human-induced land degradation.


2021 ◽  
pp. 912-926
Author(s):  
Fadel Abbas Zwain ◽  
Thair Thamer Al-Samarrai ◽  
Younus I. Al-Saady

Iraq territory as a whole and south of Iraq in particular encountered rapid desertification and signs of severe land degradation in the last decades. Both natural and anthropogenic factors are responsible for the extent of desertification. Remote sensing data and image analysis tools were employed to identify, detect, and monitor desertification in Basra governorate. Different remote sensing indicators and image indices were applied in order to better identify the desertification development in the study area, including the Normalized difference vegetation index (NDVI), Normalized Difference Water Index (NDWI), Salinity index (SI), Top Soil Grain Size Index (GSI) , Land Surface Temperature (LST) , Land Surface Soil Moisture (LSM), and Land Degradation Risk Index (LDI) which was used for the assessment of degradation severity .Three Landsat images, acquired in 1973, 1993, and 2013, were used to evaluate the potential of using remote sensing analysis in desertification monitoring. The approach applied in this study for evaluating this phenomenon was proven to be an effective tool for the recognition of areas at risk of desertification. The results indicated that the arid zone of Basra governorate encounters substantial changes in the environment, such as decreasing surface water, degradation of agricultural lands (as palm orchards and crops), and deterioration of marshlands. Additional changes include increased salinization with the creeping of sand dunes to agricultural areas, as well as the impacts of oil fields and other facilities.


2021 ◽  
Author(s):  
Maria Castellaneta ◽  
Angelo Rita ◽  
Jesus Julio Camarero ◽  
Michele Colangelo ◽  
Francesco Ripullone

<p>The recent increase in the frequency and severity of heat weaves and droughts has intensified efforts to understand their impact on forest productivity and tree vigor. These climate extreme events are expected to reduce productivity and increase the tree mortality rate, particularly in drought-prone Mediterranean forests. Thus, our goal is to quantify the impacts of hotter droughts on forests vulnerable to drought in the Italian and Iberian peninsulas by using remotely sensed data (NDVI, Normalized Difference Vegetation Index) to track vegetation changes and tree-ring data from forest sites showing dieback to assess tree’s growth trends. The survey involved the comparison of stands showing dieback where trees showed growth decline and high defoliation rates (decay) versus stands where trees showed low or no defoliation. Our outcomes will be discussed i) to describe the effects of climate anomalies on forest vulnerability in terms of resistance and resilience, and ii) to evaluate the existence of a correlation between vegetation response and “post-disturbance” recovery.</p>


2017 ◽  
Author(s):  
Masoud Masoudi ◽  
Parviz Jokar ◽  
Biswajeet Pradhan

Abstract. Land degradation reduces production of biomass and vegetation cover in every land uses. The lack of specific data related to degradation is a severe limitation for its monitoring. Assessment of current state of land degradation or desertification is very difficult because this phenomena includes several complex processes. For that reason, there is no common agreement has been achieved among the scientific community for its assessment. This study was carried out as an attempt to develop a new approach for land degradation assessment based on its current state by modifying of FAO1/UNEP2 index and normalized difference vegetation index (NDVI) index in Khuzestan province, placed in the southwestern part of Iran. The proposed evaluation method is easy to understand the degree of destruction due to low cost and save time. Results showed that based on percent of hazard classes in current condition of land degradation, the most widespread and minimum area of hazard classes are moderate (38.6 %) and no hazard (0.65 %) classes, respectively. While results in the desert area of study area showed that severe class is much widespread than other hazard classes, showing environmentally bad situation in the study area. Statistical results indicated that degradation is highest in desert and then rangeland compared to dry cultivation and forest. Also statistical test showed average of degradation amount in the arid region is higher than other climates. It is hoped that this attempt using geospatial techniques will be found applicable for other regions of the world and better planning and management of lands, too. 1 Food and Agriculture Organization 2 United Nations Environment Programme


2019 ◽  
Vol 11 (23) ◽  
pp. 2796
Author(s):  
Quyet Manh Vu ◽  
Venkat Lakshmi ◽  
John Bolten

This study aimed to delineate the geographic hotspots of negative trends in biomass productivity in the Lower Mekong Basin countries (Vietnam, Cambodia, Laos, and Thailand) and identify correlated regional environmental and anthropogenic factors. A long-term time-series (1982–2015) of Normalized Difference Vegetation Index at a resolution of approximately 9.16 km × 9.16 km was used to specify the areas with significant decline or increase in productivity. The relationships between vegetation changes and land attributes, such as climate, population density, soil/terrain conditions, and land-cover types, were examined. Rainfall time-series maps were used to identify areas that might have been affected by land degradation from those correlated with rainfall. Most of the detected potentially degraded areas were found in Cambodia, the Northwest and the Highland of Vietnam, the Northern Mountains of Thailand and Laos, and the mountainous border between Laos, Vietnam, and Cambodia. About 15% of the total land area of these four countries experienced a reduction in biomass productivity during the 34-year study period. The map of hotspots of changes in productivity can be used to direct further studies, including those at finer spatial resolution that may support policy makers and researchers in targeting the strategies for combating land degradation.


2021 ◽  
Vol 13 (15) ◽  
pp. 2851
Author(s):  
Tao Yu ◽  
Guli Jiapaer ◽  
Anming Bao ◽  
Guoxiong Zheng ◽  
Liangliang Jiang ◽  
...  

Land degradation poses a critical threat to the stability and security of ecosystems, especially in salinized areas. Monitoring the land degradation of salinized areas facilitates land management and ecological restoration. In this research, we integrated the salinization index (SI), albedo, normalized difference vegetation index (NDVI) and land surface soil moisture index (LSM) through the principal component analysis (PCA) method to establish a salinized land degradation index (SDI). Based on the SDI, the land degradation of a typical salinized area in the Central Asia Amu Darya delta (ADD) was analysed for the period 1990–2019. The results showed that the proposed SDI had a high positive correlation (R2 = 0.89, p < 0.001) with the soil salt content based on field sampling, indicating that the SDI can reveal the land degradation characteristics of the ADD. The SDI indicated that the extreme and strong land degradation areas increased from 1990 to 2019, mainly in the downstream and peripheral regions of the ADD. From 1990 to 2000, land degradation improvement over a larger area than developed, conversely, from 2000 to 2019, and especially, from 2000 to 2010, the proportion of land degradation developed was 32%, which was mainly concentrated in the downstream region of the ADD. The spatial autocorrelation analysis indicated that the SDI values of Moran’s I in 1990, 2000, 2010 and 2019 were 0.82, 0.78, 0.82 and 0.77, respectively, suggesting that the SDI was notably clustered in space rather than randomly distributed. The expansion of unused land due to land use change, water withdrawal from the Amu Darya River and the discharge of salt downstream all contributed to land degradation in the ADD. This study provides several valuable insights into the land degradation monitoring and management of this salinized delta and similar settings worldwide.


2018 ◽  
Author(s):  
Ketut Wikantika

The study of land degradation in various geographic conditions in the world using remote sensing is still become a concern amongst researchers because it has been proven as one of the most effective ways. In Indonesia, East Kalimantan province is one of the experiencing land area degradation due to intensive exploitation of natural resouces since 1970. The degradation model proposed in this study is modeled using a combination of ASTER and Landsat ETM+ imagery, both taken on February 27, 2001. The model composed of both two aspects: erosion aspect and vegetation aspect. Vegetation aspect is a function of suppression of vegetation from Crippen and Blom method and spectral angle of Spectral Angle Mapper (SAM) algorithm. The erosion aspect is calculated from erosion prediction and depends on the constant factors of b as well, and the latter is said as a function of Normalized Difference Vegetation Index (NDVI) value. Based on the validation using spectral based degradation map and Land Degradation Index of Chikhaoui et al, our model proves the ability to map land degradation, especially to better distinguish the classification of land degradation at very-slightly to very-severe intensity and the ability to differentiate water body, swamp or river.


Sign in / Sign up

Export Citation Format

Share Document