Silencing Of NHE1 Gene Decreases Hypoxia-induced Proliferation And Cell Cycle Progression Of Human Pulmonary Artery Smooth Muscle Cells

Author(s):  
Lunyin Yu ◽  
Charles A. Hales
Hypertension ◽  
2020 ◽  
Vol 76 (4) ◽  
pp. 1124-1133 ◽  
Author(s):  
Ying Liu ◽  
Hongyue Zhang ◽  
Yiying Li ◽  
Lixin Yan ◽  
Wei Du ◽  
...  

Pulmonary hypertension (PH) is a rare and fatal disorder involving the vascular remodeling of pulmonary arteries mediated by the enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs). Long noncoding RNAs are a subclass of regulatory molecules with diverse cellular functions, but their role in PH remains largely unexplored. We aimed to identify and determine the functions of long noncoding RNAs involved in hypoxia-induced PH and PASMC proliferation. RNA sequencing in a hypoxic mouse model identified hypoxia-regulated long noncoding RNAs, including Rps4l. Rps4l expression was significantly reduced in PH-model mice and hypoxic PASMCs. The subcellular localization of Rps4l was detected by RNA fluorescence in situ hybridization and quantification of nuclear/cytoplasmic RNA. Rps4l overexpression rescued pulmonary arterial hypertension features, as demonstrated by right ventricle hypertrophy, right ventricular systolic pressure, hemodynamics, cardiac function, and vascular remodeling. At the cellular level, Rps4l overexpression weakened cell viability and proliferation and suppressed cell cycle progression. Potential Rps4l-binding proteins were identified via RNA pull-down followed by mass spectrometry, RNA immunoprecipitation, and microscale thermophoresis. These results indicated that Rps4l is associated with and affects the stabilization of ILF3 (interleukin enhancer-binding factor 3). Rps41 further regulates the levels of HIF-1α and consequently leads to hypoxia-induced PASMC proliferation and migration. Our results showed that in hypoxic PASMCs, Rps4l expression decreases due to regulation by hypoxia. This decrease affects the proliferation, migration, and cell cycle progression of PASMCs through ILF3/HIF-1α. These results provide a theoretical basis for further investigations into the pathological mechanism of hypoxic PH and may provide insight for the development of novel treatments.


1993 ◽  
Vol 264 (4) ◽  
pp. C783-C788 ◽  
Author(s):  
R. Malam-Souley ◽  
M. Campan ◽  
A. P. Gadeau ◽  
C. Desgranges

Because exogenous ATP is suspected to influence the proliferative process, its effects on the cell cycle progression of arterial smooth muscle cells were studied by investigating changes in the mRNA steady-state level of cell cycle-dependent genes. Stimulation of cultured quiescent smooth muscle cells by exogenous ATP induced chronological activation not only of immediate-early but also of delayed-early cell cycle-dependent genes, which were usually expressed after a mitogenic stimulation. In contrast, ATP did not increase late G1 gene mRNA level, demonstrating that this nucleotide induces a limited cell cycle progression of arterial smooth muscle cells through the G1 phase but is not able by itself to induce crossing over the G1-S boundary and consequently DNA synthesis. An increase in c-fos mRNA level was also induced by ADP but not by AMP or adenosine. Moreover, 2-methylthioadenosine 5'-triphosphate but not alpha, beta-methyleneadenosine 5'-triphosphate mediated this kind of response. Taken together, these results demonstrate that extracellular ATP induces the limited progression of arterial smooth muscle cells through the G1 phase via its fixation on P2 gamma receptors.


Sign in / Sign up

Export Citation Format

Share Document