Elucidating The In Vivo Phenotype And Niche Of The Resident Human Mesenchymal Stem Cell In An Adult Lung

Author(s):  
Linda Badri ◽  
Natalie Walker ◽  
Takashi Ohtsuka ◽  
Zhuo Wang ◽  
Mario Delmar ◽  
...  
2013 ◽  
Vol 19 (13-14) ◽  
pp. 1641-1653 ◽  
Author(s):  
Guilhem Frescaline ◽  
Thibault Bouderlique ◽  
Leyya Mansoor ◽  
Gilles Carpentier ◽  
Brigitte Baroukh ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Samuel Herberg ◽  
Daniel Varghai ◽  
Daniel S. Alt ◽  
Phuong N. Dang ◽  
Honghyun Park ◽  
...  

AbstractBiomimetic bone tissue engineering strategies partially recapitulate development. We recently showed functional restoration of femoral defects using scaffold-free human mesenchymal stem cell (hMSC) condensates featuring localized morphogen presentation with delayed in vivo mechanical loading. Possible effects of construct geometry on healing outcome remain unclear. Here, we hypothesized that localized presentation of transforming growth factor (TGF)-β1 and bone morphogenetic protein (BMP)-2 to engineered hMSC tubes mimicking femoral diaphyses induces endochondral ossification, and that TGF-β1 + BMP-2-presenting hMSC tubes enhance defect healing with delayed in vivo loading vs. loosely packed hMSC sheets. Localized morphogen presentation stimulated chondrogenic priming/endochondral differentiation in vitro. Subcutaneously, hMSC tubes formed cartilage templates that underwent bony remodeling. Orthotopically, hMSC tubes stimulated more robust endochondral defect healing vs. hMSC sheets. Tissue resembling normal growth plate was observed with negligible ectopic bone. This study demonstrates interactions between hMSC condensation geometry, morphogen bioavailability, and mechanical cues to recapitulate development for biomimetic bone tissue engineering.


2010 ◽  
Vol 11 (3) ◽  
pp. 199
Author(s):  
Amir Najafi ◽  
Nima Aghili ◽  
Hajra Nashin ◽  
Xinzhi Peng ◽  
Roberta Lassance ◽  
...  

2010 ◽  
Vol 7 (1) ◽  
pp. 51 ◽  
Author(s):  
Tracey L Bonfield ◽  
Mary T Nolan (Koloze) ◽  
Donald P Lennon ◽  
Arnold I Caplan

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Barbara Lukomska ◽  
Luiza Stanaszek ◽  
Ewa Zuba-Surma ◽  
Pawel Legosz ◽  
Sylwia Sarzynska ◽  
...  

Stem cell therapy is being intensely investigated within the last years. Expectations are high regarding mesenchymal stem cell (MSC) treatment in translational medicine. However, many aspects concerning MSC therapy should be profoundly defined. Due to a variety of approaches that are investigated, potential effects of stem cell therapy are not transparent. On the other hand, most results of MSC administration in vivo have confirmed their safety and showed promising beneficial outcomes. However, the therapeutic effects of MSC-based treatment are still not spectacular and there is a potential risk related to MSC applications into specific cell niche that should be considered in long-term observations and follow-up outcomes. In this review, we intend to address some problems and critically discuss the complex nature of MSCs in the context of their effective and safe applications in regenerative medicine in different diseases including graft versus host disease (GvHD) and cardiac, neurological, and orthopedic disorders.


2010 ◽  
Vol 16 (6) ◽  
pp. 1523-1531 ◽  
Author(s):  
Sarah R. Vaiselbuh ◽  
Morris Edelman ◽  
Jeffrey M. Lipton ◽  
Johnson M. Liu

2020 ◽  
Author(s):  
Xiuying Li ◽  
Ying Wang ◽  
Liyan Shi ◽  
Binxi Li ◽  
Jing Li ◽  
...  

Abstract Human mesenchymal stem cell (MSC)-derived exosomes (Exos) are a promising therapeutic agent for cell-free regenerative medicine. However, their poor organ-targeting ability and therapeutic efficacy have been found to critically limit their clinical applications. In the present study, we fabricated iron oxide nanoparticle (NP)-labeled exosomes (Exo+NPs) from NP-treated MSCs and evaluated their therapeutic efficacy in a clinically relevant model of skin injury. We found that the Exos could be readily internalized by human umbilical vein endothelial cells (HUVECs), and could significantly promote their proliferation, migration, and angiogenesis both in vitro and in vivo. Moreover, the protein expression of proliferative markers (Cyclin D1 and Cyclin A2), growth factors (VEGFA), and migration-related chemokines (CXCL12) was significantly upregulated after Exo treatment. Unlike the Exos prepared from untreated MSCs, the Exo+NPs contained NPs that acted as a magnet-guided navigation tool. The in vivo systemic injection of Exo+NPs with magnetic guidance significantly increased the number of Exo+NPs that accumulated at the injury site. Furthermore, these accumulated Exo+NPs significantly enhanced endothelial cell proliferation, migration, and angiogenic tubule formation in vivo; moreover, they reduced scar formation and increased CK19, PCNA, and collagen expression in vivo. Collectively, these findings confirm the development of therapeutically efficacious extracellular nanovesicles and demonstrate their feasibility in cutaneous wound repair.


2020 ◽  
Author(s):  
Mahetab H. Amer ◽  
Marta Alvarez-Paino ◽  
Jane McLaren ◽  
Francesco Pappalardo ◽  
Sara Trujillo ◽  
...  

AbstractMesenchymal stem cells have been the focus of intense research in bone development and regeneration. We demonstrate the potential of microparticles as modulating moieties of osteogenic response by utilizing their architectural features. Topographically textured microparticles of varying microscale features were produced by exploiting phase-separation of a readily-soluble sacrificial component from polylactic acid. The influence of varying topographical features on primary human mesenchymal stem cell attachment, proliferation and markers of osteogenesis was investigated. In the absence of osteoinductive supplements, cells cultured on textured microparticles exhibited notably increased expression of osteogenic markers relative to conventional smooth microparticles. They also exhibited varying morphological, attachment and proliferation responses. Significantly altered gene expression and metabolic profiles were observed, with varying histological characteristics in vivo. This study highlights how tailoring topographical design offers cell-instructive 3D microenvironments which allow manipulation of stem cell fate by eliciting the desired downstream response without use of exogenous osteoinductive factors.


2019 ◽  
Author(s):  
Samuel Herberg ◽  
Daniel Varghai ◽  
Daniel S. Alt ◽  
Phuong N. Dang ◽  
Honghyun Park ◽  
...  

AbstractScaffold-based bone tissue engineering approaches frequently induce repair processes dissimilar to normal developmental programs. In contrast, biomimetic strategies aim to recapitulate aspects of development through cellular self-organization, morphogenetic pathway activation, and mechanical cues. This may improve regenerative outcome in large long bone defects that cannot heal on their own; however, no study to date has investigated the role of scaffold-free construct geometry, in this case tubes mimicking long bone diaphyses, on bone regeneration. We hypothesized that microparticle-mediated in situ presentation of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) to engineered human mesenchymal stem cell (hMSC) tubes induces the endochondral cascade, and that TGF-β1 + BMP-2-presenting hMSC tubes facilitate enhanced endochondral healing of critical-sized femoral segmental defects under delayed in vivo mechanical loading conditions compared to loosely-packed hMSC sheets. Here, localized morphogen presentation imparted early chondrogenic lineage priming, and stimulated robust endochondral differentiation of hMSC tubes in vitro. In an ectopic environment, hMSC tubes formed a cartilage template that was actively remodeled into trabecular bone through endochondral ossification without lengthy predifferentiation. Similarly, hMSC tubes stimulated in vivo cartilage and bone formation and more robust healing in femoral defects compared to hMSC sheets. New bone was formed through endochondral ossification in both groups; however, only hMSC tubes induced regenerate tissue partially resembling normal growth plate architecture. Together, this study demonstrates the interaction between mesenchymal cell condensation geometry, bioavailability of multiple morphogens, and defined in vivo mechanical environment to recapitulate developmental programs for biomimetic bone tissue engineering.Significance StatementEngineered bone constructs must be capable of withstanding and adapting to harsh conditions in a defect site upon implantation, and can be designed to facilitate repair processes that resemble normal developmental programs. Self-assembled tubular human mesenchymal stem cell constructs were engineered to resemble the geometry of long bone diaphyses. By mimicking the cellular, biochemical, and mechanical environment of the endochondral ossification process during embryonic development, successful healing of large femoral segmental defects upon implantation was achieved and the extent was construct geometry dependent. Importantly, results were obtained without a supporting scaffold or lengthy predifferentiation of the tubular constructs. This indicates that adult stem/progenitor cells retain features of embryonic mesenchyme, and supports the concept of developmental engineering for bone regeneration approaches.


Sign in / Sign up

Export Citation Format

Share Document