Closed-Loop Control of Respiratory Drive Using Pressure-Support Ventilation

2005 ◽  
Vol 171 (9) ◽  
pp. 1009-1014 ◽  
Author(s):  
Jadranka Spahija ◽  
Jennifer Beck ◽  
Michel de Marchie ◽  
Alain Comtois ◽  
Christer Sinderby
1996 ◽  
Vol 24 (5) ◽  
pp. 771-779 ◽  
Author(s):  
Giorgio A. Iotti ◽  
Josef X. Brunner ◽  
Antonio Braschi ◽  
Thomas Laubscher ◽  
Maddalena C. Olivei ◽  
...  

Critical Care ◽  
2008 ◽  
Vol 12 (Suppl 2) ◽  
pp. P305
Author(s):  
A Tejero Pedregosa ◽  
F Ruiz Ferrón ◽  
MI Ruiz García ◽  
S Galindo Rodríguez ◽  
A Morante Valle ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Ling Liu ◽  
Yue Yu ◽  
Xiaoting Xu ◽  
Qin Sun ◽  
Haibo Qiu ◽  
...  

Background: Patient-ventilator asynchrony is common during pressure support ventilation (PSV) because of the constant cycling-off criteria and variation of respiratory system mechanical properties in individual patients. Automatic adjustment of inspiratory triggers and cycling-off criteria based on waveforms might be a useful tool to improve patient-ventilator asynchrony during PSV.Method: Twenty-four patients were enrolled and were ventilated using PSV with different cycling-off criteria of 10% (PS10), 30% (PS30), 50% (PS50), and automatic adjustment PSV (PSAUTO). Patient-ventilator interactions were measured.Results: The total asynchrony index (AI) and NeuroSync index were consistently lower in PSAUTO when compared with PS10, PS30, and PS50, (P < 0.05). The benefit of PSAUTO in reducing the total AI was mainly because of the reduction of the micro-AI but not the macro-AI. PSAUTO significantly improved the relative cycling-off error when compared with prefixed controlled PSV (P < 0.05). PSAUTO significantly reduced the trigger error and inspiratory effort for the trigger when compared with a prefixed trigger. However, total inspiratory effort, breathing patterns, and respiratory drive were not different among modes.Conclusions: When compared with fixed cycling-off criteria, an automatic adjustment system improved patient-ventilator asynchrony without changes in breathing patterns during PSV. The automatic adjustment system could be a useful tool to titrate more personalized mechanical ventilation.


Author(s):  
Hérnan Aguirre-Bermeo ◽  
Jordi Mancebo

Pressure support ventilation (PSV) is one of the most common ventilatory modalities used in intensive care units. PSV is an assisted, pressure-limited, and flow-cycled ventilatory mode. The ventilator provides assistance when the patient makes a breathing effort, and when inspiratory flow reaches a certain threshold level, cycling to exhalation occurs. PSV unloads respiratory muscle effort, while allowing the patient to retain control over the respiratory rate and tidal volume. Withdrawal from mechanical ventilation should be performed with a gradual reduction of levels of support until extubation. Asynchronies can be present during PSV and are typically associated with high levels of support. A closed-loop modality, which adjusts support levels to keep the patient in a ‘comfort zone’, has been designed to assist in the withdrawal of mechanical ventilation. It performs at least as well as experienced medical staff and could be useful in specific groups of patients.


2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


Sign in / Sign up

Export Citation Format

Share Document