The Impact of Visual Feedback Type on the Mastery of Visuo-Motor Transformations

2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.

Author(s):  
Liliana P Paredes ◽  
Strahinja Dosen ◽  
Frank Rattay ◽  
Bernhard Graimann ◽  
Dario Farina

Author(s):  
Ethan Sorrell ◽  
Michael E. Rule ◽  
Timothy O’Leary

Brain–machine interfaces (BMIs) promise to restore movement and communication in people with paralysis and ultimately allow the human brain to interact seamlessly with external devices, paving the way for a new wave of medical and consumer technology. However, neural activity can adapt and change over time, presenting a substantial challenge for reliable BMI implementation. Large-scale recordings in animal studies now allow us to study how behavioral information is distributed in multiple brain areas, and state-of-the-art interfaces now incorporate models of the brain as a feedback controller. Ongoing research aims to understand the impact of neural plasticity on BMIs and find ways to leverage learning while accommodating unexpected changes in the neural code. We review the current state of experimental and clinical BMI research, focusing on what we know about the neural code, methods for optimizing decoders for closed-loop control, and emerging strategies for addressing neural plasticity. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2012 ◽  
Vol 253-255 ◽  
pp. 2117-2120
Author(s):  
Yu Zhuo Men ◽  
Hai Bo Yu ◽  
Xian Sheng Li ◽  
Yue Wei Li

In order to study the impact of the suspension damping system on the vehicle riding stability, the PID controlling means for suspension damped neural network is presented, implementing a closed-loop control of yaw stability for vehicles. For the two typical working conditions of single lane changing and step steering, the MATLAB software is used for simulation. The result shows that controlling over the vehicle’s lateral deviation movement through suspension damper, it can reduce significantly the load transfers of both the left wheels and right wheels, so that to effectively restrain a vehicle’s over-steering.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jian Dong ◽  
Winnie Jensen ◽  
Bo Geng ◽  
Ernest Nlandu Kamavuako ◽  
Strahinja Dosen

AimLimb loss is a dramatic event with a devastating impact on a person’s quality of life. Prostheses have been used to restore lost motor abilities and cosmetic appearance. Closing the loop between the prosthesis and the amputee by providing somatosensory feedback to the user might improve the performance, confidence of the amputee, and embodiment of the prosthesis. Recently, a minimally invasive method, in which the electrodes are placed subdermally, was presented and psychometrically evaluated. The present study aimed to assess the quality of online control with subdermal stimulation and compare it to that achieved using surface stimulation (common benchmark) as well as to investigate the impact of training on the two modalities.MethodsTen able-bodied subjects performed a PC-based compensatory tracking task. The subjects employed a joystick to track a predefined pseudorandom trajectory using feedback on the momentary tracking error, which was conveyed via surface and subdermal electrotactile stimulation. The tracking performance was evaluated using the correlation coefficient (CORR), root mean square error (RMSE), and time delay between reference and generated trajectories.ResultsBoth stimulation modalities resulted in good closed-loop control, and surface stimulation outperformed the subdermal approach. There was significant difference in CORR (86 vs 77%) and RMSE (0.23 vs 0.31) between surface and subdermal stimulation (all p < 0.05). The RMSE of the subdermal stimulation decreased significantly in the first few trials.ConclusionSubdermal stimulation is a viable method to provide tactile feedback. The quality of online control is, however, somewhat worse compared to that achieved using surface stimulation. Nevertheless, due to minimal invasiveness, compactness, and power efficiency, the subdermal interface could be an attractive solution for the functional application in sensate prostheses.


2020 ◽  
Vol 11 (1) ◽  
pp. 84
Author(s):  
Jožef Ritonja ◽  
Andreja Goršek ◽  
Darja Pečar

Fermentation is a crucial bioengineering process, existentially important for modern society. The most commonly used production unit for this process is the batch bioreactor. Its main advantage is unsophisticated construction, which unfortunately results in its incapability of controlling the transient state of the fermentation process. Control of the fermentation can significantly improve the quality of the product and the economy of the process; therefore, it is useful for bioreactors to be equipped with a control system. Based on the experimental results, we used an optimization method to identify a mathematical model that describes the impact of the bioreactor’s temperature on the fermentation’s transient process. The obtained model was applied for the design and synthesis of the closed-loop control system. Simulations and experiments confirmed the effectiveness of the proposed control system. In this way, we can ensure the consistent quality of the produced probiotic product, increase the amount of the product, and shorten the fermentation time. The original results display the feasibility of the closed-loop control of the batch bioreactor’s fermentation process by changing the temperature. So far, the process has been carried without a closed-loop control system. The problem is current and has not yet been solved sufficiently. There are many attempts published; one of the last shows the possibility of controlling the fermentation process by changing the oxygen supply, which is more complex and expensive for realization than the solution from our study.


Author(s):  
Martin A. Garenfeld ◽  
Nikola Jorgovanovic ◽  
Vojin Ilic ◽  
Matija Strbac ◽  
Milica Isakovic ◽  
...  

Abstract Background Despite important advancements in control and mechatronics of myoelectric prostheses, the communication between the user and his/her bionic limb is still unidirectional, as these systems do not provide somatosensory feedback. Electrotactile stimulation is an attractive technology to close the control loop since it allows flexible modulation of multiple parameters and compact interface design via multi-pad electrodes. However, the stimulation interferes with the recording of myoelectric signals and this can be detrimental to control. Methods We present a novel compact solution for simultaneous recording and stimulation through dynamic blanking of stimulation artefacts. To test the system, a feedback coding scheme communicating wrist rotation and hand aperture was developed specifically to stress the myoelectric control while still providing meaningful information to the subjects. Ten subjects participated in an experiment, where the quality of closed-loop myoelectric control was assessed by controlling a cursor in a two degrees of freedom target-reaching task. The benchmark performance with visual feedback was compared to that achieved by combining visual feedback and electrotactile stimulation as well as by using electrotactile feedback only. Results There was no significant difference in performance between visual and combined feedback condition with regards to successfully reached targets, time to reach a target, path efficiency and the number of overshoots. Therefore, the quality of myoelectric control was preserved in spite of the stimulation. As expected, the tactile condition was significantly poorer in completion rate (100/4% and 78/25% for combined and tactile condition, respectively) and time to reach a target (9/2 s and 13/4 s for combined and tactile condition, respectively). However, the performance in the tactile condition was still good, with no significant difference in path efficiency (38/8%) and the number of overshoots (0.5/0.4 overshoots), indicating that the stimulation was meaningful for the subjects and useful for closed-loop control. Conclusions Overall, the results demonstrated that the developed system can provide robust closed-loop control using electrotactile stimulation. The system supports different encoding schemes and allows placing the recording and stimulation electrodes next to each other. This is an important step towards an integrated solution where the developed unit will be embedded into a prosthetic socket.


Sign in / Sign up

Export Citation Format

Share Document