scholarly journals Application of confocal laser scanning microscopy to the study of amber bioinclusions

2021 ◽  
Vol 4 (3) ◽  
Author(s):  
YAN-ZHE FU ◽  
YAN-DA LI ◽  
YI-TONG SU ◽  
CHEN-YANG CAI ◽  
DI-YING HUANG

Confocal laser scanning microscopy is an essential analytical tool in biological, biomedical, and material sciences, integrating microscope manufacturing technology, optical-electronic technology, and computer technology. In the last decade, confocal laser scanning microscopy has been successfully applied to the study of amber bioinclusions. Enhanced signal to noise ratios, resolution power, capability of optical sectioning, three-dimensional reconstruction, and better performance when imaging thicker samples provide a great deal of valuable and detailed morphological information about amber fossils. We briefly discuss the practical applications of CLSM in amber studies and compare it with other imaging methods commonly used in the field, including bright-field microscopy, wide-field fluorescence microscopy, and micro-computed tomography. A general procedure for imaging amber inclusions with CLSM is provided, with a focus on pretreatments and image processing.

2012 ◽  
Vol 11 (3) ◽  
pp. 669-674 ◽  
Author(s):  
Szabolcs Szilveszter ◽  
Botond Raduly ◽  
Szilard Bucs ◽  
Beata Abraham ◽  
Szabolcs Lanyi ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3403
Author(s):  
Shlomo Elbahary ◽  
Sohad Haj Yahya ◽  
Cemre Koç ◽  
Hagay Shemesh ◽  
Eyal Rosen ◽  
...  

Following furcal perforation, bacteria may colonize the defect and cause inflammation and periodontal destruction. This study used confocal laser scanning microscopy (CLSM) to evaluate Enterococcus faecalis colonization and proliferation in furcal perforations repaired with different materials. Furcal perforations created in 55 extracted human mandibular molars were repaired using either MTA-Angelus, Endocem, or Biodentine and coronally subjected to E. faecalis suspension for 21 days. The specimens were then stained using a LIVE/DEAD Viability Kit and visualized by CLSM. The minimum and maximum depths of bacterial penetration into the dentinal tubules were 159 and 1790 μM, respectively, with a mean of 713 μM. There were significantly more live than dead bacteria inside the dentinal tubules (p = 0.0023) in all groups, and all three repair materials exhibited a similarly sized stained area (p = 0.083). However, there were significant differences in the numbers of dead bacteria at the circumference of the perforation defect (p = 0.0041), with a significantly higher ratio of live to dead bacteria in the MTA-Angelus group (p = 0.001). Following perforation repair, bacteria may colonize the interface between the repair material and dentin and may penetrate through the dentinal tubules. The type of repair material has a significant effect on the viability of the colonizing bacteria.


Sign in / Sign up

Export Citation Format

Share Document