New circumscription of Cryptanthus and new Cryptanthoid genera and subgenera  (Bromeliaceae: Bromelioideae) based on neglected morphological traits and molecular phylogeny

Phytotaxa ◽  
2017 ◽  
Vol 318 (1) ◽  
pp. 1 ◽  
Author(s):  
ELTON M. C. LEME ◽  
SASCHA HELLER ◽  
GEORG ZIZKA ◽  
HEIDEMARIE HALBRITTER

The authors provide a new circumscription for genera of the “Cryptanthoid complex” of Bromeliaceae subfam. Bromelioideae, originally composed of Cryptanthus, Lapanthus, Orthophytum, and Sincoraea, on the basis of new or re-evaluated ecological, geographical and morphological evidence, as well as molecular phylogenies. A new generic status is proposed for Cryptanthus subg. Hoplocryptanthus and two new genera, Forzzaea, and Rokautskyia, as well as four new subgenera in Orthophytum (Capixabanthus, Clavanthus, Krenakanthus, and Orthocryptanthus) are described to render taxonomic units monophyletic. The recognized taxa are well circumscribed by the combination of geographical range, ecology and morphological characters (sex distribution, leaf succulence, sepal and petal size and connation, petal appendages, pollen and stigma morphology, fruit size, calyx persistency, seed size and number per fruit). Field collected living specimens of 78 of the 81 species of Cryptanthus s.l., all species of Lapanthus, 58 of the 59 species of Orthophytum, and all species of Sincoraea were analysed in habitat and/or in cultivation, allowing the documentation and illustration of new and underutilized characters. The molecular analysis incorporated 91 accessions representing 33 species of Cryptanthus, all species (3) of Lapanthus, 42 species of Orthophytum, and 9 species of Sincoraea, including the type species for the first three genera and four outgroup taxa. The results suggest, that some morphological characters generally considered homoplasious for Bromelioideae, for the “Cryptanthoid complex”, are not homoplasious at least within the obtained, biogeographycally well delimited clades and their taxonomical utility is redeemed.

2011 ◽  
Vol 20 (1) ◽  
pp. 161-173
Author(s):  
A.P. Kassatkina

Resuming published and own data, a revision of classification of Chaetognatha is presented. The family Sagittidae Claus & Grobben, 1905 is given a rank of subclass, Sagittiones, characterised, in particular, by the presence of two pairs of sac-like gelatinous structures or two pairs of fins. Besides the order Aphragmophora Tokioka, 1965, it contains the new order Biphragmosagittiformes ord. nov., which is a unique group of Chaetognatha with an unusual combination of morphological characters: the transverse muscles present in both the trunk and the tail sections of the body; the seminal vesicles simple, without internal complex compartments; the presence of two pairs of lateral fins. The only family assigned to the new order, Biphragmosagittidae fam. nov., contains two genera. Diagnoses of the two new genera, Biphragmosagitta gen. nov. (type species B. tarasovi sp. nov. and B. angusticephala sp. nov.) and Biphragmofastigata gen. nov. (type species B. fastigata sp. nov.), detailed descriptions and pictures of the three new species are presented.


2020 ◽  
Vol 190 (3) ◽  
pp. 889-941
Author(s):  
Paula Raile Riccardi ◽  
Dalton De Souza Amorim

Abstract The Chloropidae is a species-rich family of flies with about 3000 species in four subfamilies. The Chloropinae is the second most species-rich subfamily with almost 1000 described species in 75 accepted genera. There is agreement about the monophyly of the subfamily; however, the relationships among the genera are still poorly understood and some genera are clearly paraphyletic. Thus, the interpretation of the evolution of morphological traits, such as male terminalia sclerites, remains challenging. This is the first phylogenetic study of the Chloropinae using a formal analytical approach, including representatives of 73 genera of the subfamily and 124 morphological characters. The monophyly of the Chloropinae is corroborated. Chloropella is sister to the remainder of the subfamily. Slightly different analytical procedures show stable clades and rogue taxa. We propose a system for the subfamily with ten tribes, three of which are newly proposed here—Chloropellini trib. nov., Chloropini, Chloropsinini trib. nov., Diplotoxini, Eurinini stat. nov., Lasiosinini, Mepachymerini, Meromyzini, Mindini and Pseudothaumatomyini. Eight genera are kept incertae sedis and two new genera are erected. There is compelling evidence that Chlorops and Ectecephalina are paraphyletic.


Phytotaxa ◽  
2016 ◽  
Vol 279 (1) ◽  
pp. 1 ◽  
Author(s):  
MICHAEL H.J. BARFUSS ◽  
WALTER TILL ◽  
ELTON M.C. LEME ◽  
JUAN P. PINZÓN ◽  
JOSÉ M. MANZANARES ◽  
...  

A taxonomic revision of Bromeliaceae subfam. Tillandsioideae is presented based on a multi-locus DNA sequence phylogeny (viz., plastid DNA loci rpoB-trnC-petN, trnK-matK-trnK, and ycf1, and the nuclear DNA gene PHYC) and new or re-evaluated morphology (e.g., leaf, inflorescence, sepal, petal, ovary, stigma, stamen, pollen, ovule, and seed morphology). This enables the circumscription of monophyletic units using synapomorphic combinations of diagnostic morphological characters. Stigma morphology has proven to be indicative for super-specific taxa in Tillandsioideae. One new stigma type and several subtypes of previously described stigmas were found. The four tribes proposed earlier are mostly confirmed, but Catopsideae replaces the formerly used name Pogospermeae for the monotypic tribe of Catopsis. In addition, the two new subtribes Cipuropsidinae and Vrieseinae are proposed within tribe Vrieseeae. Several new genera are established to render taxonomic units monophyletic and morphologically well circumscribed. They represent segregates of either Mezobromelia (Gregbrownia: 4 spp.), Tillandsia (viz., Barfussia: 3 spp., Josemania: 5 spp., Lemeltonia: 7 spp., Pseudalcantarea: 3 spp., and Wallisia: 4 spp. and 1 hybrid), or Vriesea (viz., Goudaea: 2 spp., Jagrantia: 1 sp., Lutheria: 4 spp., Stigmatodon: 18 spp., and Zizkaea: 1 spp.). The new subgenera Tillandsia subg. Pseudovriesea and T. subg. Viridantha are established, and T. subg. Aerobia is resurrected. An identification key to all accepted genera of Bromeliaceae subfam. Tillandsioideae is provided. Furthermore, to clarify nomenclatural uncertainties, typifications are proposed for Catopsis subg. Tridynandra, Thecophyllum [unranked] Biflorae, Tillandsia subg. Aerobia, T. sect. Caricifoliae, T. sect. Conostachys, T. sect. Cyathophora, T. sect. Eriophyllum, T. sect. Macrocyathus, T. sect. Platystachys Baker auct. non al., Tillandsia sect. Strepsia, Vriesea subg. Conostachys Mez auct. non al., T. lindenii K. Koch auct. non al., and T. macropetala.


Zootaxa ◽  
2006 ◽  
Vol 1332 (1) ◽  
pp. 1 ◽  
Author(s):  
LUIS F. CARRERA-PARRA

This study represents the first phylogenetic reconstruction of lumbrinerid genera using parsimony analyses of 38 morphological characters. Following higher-level phylogenetic analysis, Oenone (Oenonidae) was selected as outgroup. The analysis was restricted to type species for each genus, yielded 24 equally parsimonious trees, which after successive weighting were reduced to one tree (CI= 0.7396). The topology of this tree revealed the separation of the family into four main clades: 1. Lysarete, 2. Arabellonereis, 3. Scoletoma, Lumbrineris, Hilbigneris gen. nov., Kuwaita, Lumbricalus, Sergioneris gen. nov. and Eranno, and 4. Abyssoninoe, Cenogenus, Lumbrinerides, Lumbrineriopsis, Augeneria, Loboneris gen. nov., Gallardoneris gen. nov., Helmutneris gen. nov., and Gesaneris gen. nov.; the position of Ninoe is unclear. A diagnosis of each genus is provided, including the description of six new genera and three new species. A key to lumbrinerid genera is included.


Phytotaxa ◽  
2017 ◽  
Vol 323 (1) ◽  
pp. 93
Author(s):  
JAN PONERT

Tribe Podochileae are a systematically highly challenging orchid group. Although the delimitation of Podochileae is relatively stable and monophyly of this tribe was confirmed by DNA-based phylogenetic analysis (Ng 2002), taxonomic categories within this group have changed frequently. Some groups are well separated morphologically and have been widely accepted as separate genera for a long time, whereas the majority of species was usually placed into a single genus Eria Lindley (1825: 904). Morphological traits have indicated polyphyly of this genus, which led some authors at various times to propose segregate genera. Nevertheless, these concepts were poorly supported by relevant data, and other authors retained these species in Eria s.l. Finally, combined DNA analysis confirmed the polyphyly of Eria (Ng 2002) and resulted in recognition of several previously neglected groups at generic level (Cribb & Ng 2005), including Campanulorchis Brieger (1981: 750).Campanulorchis was originally proposed by Brieger (1981) with the single species C. globifera Brieger (1981: 750). Seidenfaden (1982, 1992) demonstrated that this species was likely to be closely related to other species of Eria and classified it in Eria sect. Strongylaria Pfitzer (1888: 175). Later, Seidenfaden (1992) suggested separation of E. pannea Lindley (1842: 64) from remaining Indochinese species of E. section Strongylaria. Phylogenetic analyses of Ng (2002) confirmed polyphyly of the section Strongylaria. The type species of E. section Strongylaria, E. pannea, was transferred to Mycaranthes Blume (1825: 352; Chen & Wood 2009), and three of the remaining taxa were transferred to a revised concept of Campanulorchis (Ng & Cribb 2005, Cribb & Ng 2005): C. globifera, C. leiophylla (Lindley 1858: 57) Ng & Cribb (2005: 272) and C. pellipes (Riechenbach in Hooker 1890: 802) Ng & Cribb (2005: 272). Four years later Chen & Wood (2009) added C. thao (Gagnepain 1950: 503) Chen & Wood (2009: 346) because it shares many morphological characters with the other Campanulorchis species, especially with C. globifera. Finally, C. pseudoleiophylla (Wood 1981: 209) Wood (2011: 176) was added (Wood et al. 2011) because this species is morphologically similar to C. leiophylla (Wood 1981). Thus, five species were accepted in the most recent orchid classification (Chase et al. 2015, Govaerts 2017). Here I add two more species to Campanulorchis.


Zootaxa ◽  
2013 ◽  
Vol 3605 (1) ◽  
pp. 1-147 ◽  
Author(s):  
MATTHEW L. GIMMEL

A pre-phylogenetic revision of the family Phalacridae at the genus level is presented. Twenty-eight new generic synonymies are established as follows: Acylomus Sharp 1888 (=Liophalacrus Sharp 1888, syn. nov.; Ganyrus Guillebeau 1894, syn. nov.; Podocesus Guillebeau 1894, syn. nov.; Tinodemus Guillebeau 1894, syn. nov.; Ledorus Guillebeau 1895, syn. nov.; Astenulus Guillebeau 1896, syn. nov.; Afronyrus Švec 2006, syn. nov.), Apallodes Reitter 1873 (=Litolibrus Sharp 1889, syn. nov.; Sphaeropsis Guillebeau 1893, syn. nov.; Gyromorphus Guillebeau 1894, syn. nov.), Augasmus Motschulsky 1858 (=Megischius Guillebeau 1896, syn. nov.; Nematolibrus Sahlberg 1913, syn. nov.), Entomocnemus Guillebeau 1894 (=Stilbomimus Champion 1924, syn. nov.), Grouvelleus Guillebeau 1892 (=Ochrolitoides Champion 1924, syn. nov.; Litotarsus Champion 1925, syn. nov.), Litochrus Erichson 1845 (=Merobrachys Guillebeau 1895, syn. nov.), Litostilbus Guillebeau 1894 (=Pseudolitochrus Liubarsky 1993, syn. nov.), Ochrolitus Sharp 1889 (=Gorginus Guillebeau 1894, syn. nov.), Olibroporus Casey 1890 (=Parasemus Guillebeau 1894, syn. nov.), Olibrosoma Tournier 1889 (=Lichrotus Lyubarsky 1993, syn. nov.), Phaenocephalus Wollaston 1873 (=Phalacratomus Scott 1922, syn. nov.; Heterostilbus Champion 1924, syn. nov.), Phalacrinus Blackburn 1891 (=Sphaerostilbus Champion 1924, syn. nov.), Pseudolibrus Flach 1889 (=Biophytus Guillebeau 1894, syn. nov.; Polyaloxus Guillebeau 1894, syn. nov.), Pycinus Guillebeau 1893 (=Ochrodemus Guillebeau 1893, syn. nov.; Radinus Guillebeau 1893, syn. nov.; Euphalacrus Champion 1925, syn. nov.). Ten new genera and seven new species are described: Antennogasmus, gen. nov. (type species: A. cordatus, sp. nov.), Austroporus, gen. nov. (type species: A. victoriensis (Blackburn)), Malagasmus Gimmel, gen. nov. (type species: M. thalesi, sp. nov.), Malagophytus, gen. nov. (type species: M. steineri, sp. nov.), Neolitochrus, gen. nov. (type species: N. pulchellus (LeConte)), Paracylomus, gen. nov. (type species: P. asiaticus (Champion)), Platyphalacrus, gen. nov. (type species: P. lawrencei, sp. nov.), Ranomafanacrinus, gen. nov. (type species: R. nigrinus, sp. nov.), Steinerlitrus, gen. nov. (type species: S. warreni, sp. nov.), Sveculus, gen. nov. (type species: S. lewisi, sp. nov.). Generic reassignments resulted in 194 new combinations. Nine new names have been established for junior primary and secondary homonyms: Acylomus bicoloratus nom. nov. for Tinodemus bicolor Švec 2002; Acylomus lyubarskyi nom. nov. for Olibrus capriviensis Lyubarsky 1998; Acylomus sveci nom. nov. for Tinodemus reticulatus Švec 2002; Acylomus orientalis nom. nov. for Stilbus similis Švec 1992; Acylomus zdeneki nom. nov. for Afronyrus snizeki Švec 2006; Apallodes championi nom. nov. for Litolibrus ocellatus Champion 1925; Olibrus peringueyi nom. nov. for Olibrus consanguineus Péringuey 1892; Augasmus exquisitus nom. nov. for Litochrus pulchellus Blackburn 1895; Litochrus pronotalis nom. nov. for Augasmus bimaculatus Lyubarsky 1996. A type species is designated for Phalacrinus Blackburn 1891 (P. australis Blackburn 1891). Six new species-group synonymies are established: Acylomus ergoti Casey 1890 (=Tinodemus grouvellei Guillebeau 1894, syn. nov.), Acylomus curvolineatus (Champion 1924) (=Tinodemus meridianus (Švec 1992), syn. nov.; Olibrus stuporatus Lyubarsky 1994, syn. nov.), Xanthocomus attenuatus (Casey, 1890) (=Xanthocomus concinnus (Casey, 1916), syn. nov.; Stilbus thoracicus Casey, 1916, syn. nov.; Stilbus quadrisetosus Casey, 1916, syn. nov.). One name, Olibrus sternalis Casey 1916, is resurrected from synonymy. Lectotypes are designated for 23 nominal species. One genus and two species are excluded from Phalacridae: Sternosternus Guillebeau 1894 (with its type and only species, S. grouvelleiGuillebeau 1894) and Parasemus parvopallidus Lea 1932, both of which belong in Hydrophilidae. All 34 resulting genera in the family Phalacridae are keyed, described, and illustrated. A phylogenetic hypothesis based on analysis of a matrix of 98 morphological characters was created using parsimony. Results of these analyses were not robust enough at deep levels to create a new subfamilial or tribal classification, but nine genus-groups have been hypothesized.


2006 ◽  
Vol 37 (1-6) ◽  
pp. 118-190 ◽  
Author(s):  
Christopher H. Dietrich ◽  
Dmitry A. Dmitriev

The genus-level classification of New World Erythroneurini is revised based on results of a phylogenetic analysis of 100 morphological characters. The 704 known species are placed into 18 genera. Erasmoneura Young and Eratoneura Young, previously treated as subgenera of Erythroneura Fitch, and Erythridula Young, most recently treated as a subgenus of Arboridia Zachvatkin, are elevated to generic status. Three species previously included in Erasmoneura are placed in a new genus, Rossmoneura (type species, Erythroneura tecta McAtee). The concept of Erythroneura is thereby narrowed to include only those species previously included in the nominotypical subgenus. New World species previously included in Zygina Fieber are not closely related to the European type species of that genus and are therefore placed in new genera. Neozygina, n. gen., based on type species Erythroneura ceonothana Beamer, includes all species previously included in the “ceonothana group”, and Zyginama, n. gen., based on type species Erythroneura ritana Beamer, includes most species previously included in the “ritana group” of New World Zygina. Five additional new genera are described to include other previously described North American Erythroneurini: Hepzygina, n. gen., based on type species Erythroneura milleri Beamer and also including E. aprica McAtee; Mexigina, n. gen., based on type species Erythroneura oculata McAtee; Nelionidia, n. gen., based on type species N. pueblensis, n. sp., three additional new species, and Erythroneura amicis Ross; Neoimbecilla, n. gen., based on type species Erythroneura kiperi Beamer and one new species; and Illinigina, n. gen., based on type species Erythroneura illinoiensis Gillette. Five new genera, based on previously undescribed species, are also recognized: Aztegina, n. gen, based on A. punctinota, n. sp., from Mexico; Amazygina, n. gen., based on type species A. decaspina, n. sp., and three additional new species from Ecuador; Hamagina, n. gen., based on type species H. spinigera, n. sp., and two additional new species from Peru and Ecuador; Napogina, n. gen., based on type species N. recta, n. sp., and one additional new species from Ecuador; Perugina, n. gen., based on type species P. denticula, n. sp., from Peru; and Spinigina, n. gen., based on type species S. hirsuta, n. sp., and an additional new species from Peru. Phylogenetic analysis suggests that the New World Erythroneurini consist of three lineages resulting from separate invasions from the Old World.


Author(s):  
Guillermo E Terán ◽  
Mauricio F Benitez ◽  
J Marcos Mirande

Abstract The freshwater fish genus Astyanax is one of the most diverse among the Characidae. The genus is defined by a combination of character states that are widely distributed in Characidae. In addition, the genus has the broadest geographical distribution in the family, being found in a great variety of environments of the Neotropical region. Although phylogenetic relationships were treated only partially, many authors agree that the genus is not monophyletic. In this contribution, we study the phylogenetic relationships of Astyanax in the context of the family Characidae, by combining morphological and molecular data. A total of 520 morphological characters, nine molecular markers and 608 taxa are analysed, of which 98 belong to Astyanax. According to our results, Astyanax is not monophyletic. We recovered species attributed to Astyanax in different subfamilies: Gymnocharacinae (including the type species), Stevardiinae and Tetragonopterinae. Among the species recovered in Gymnocharacinae, most (including the type species, the resurrected Psalidodon, and the new genus Andromakhe gen. nov.) were recovered in Gymnocharacini, while the remaining ones were recovered in Probolodini (transferred to Deuterodon or the new genus Makunaima gen. nov.).


ZooKeys ◽  
2020 ◽  
Vol 933 ◽  
pp. 15-93
Author(s):  
Huifeng Zhao ◽  
Shuqiang Li ◽  
Aibing Zhang

Species of the spider family Telemidae Fage, 1913 from East and Southeast Asia are revised. Four new genera are erected: Mekonglema Zhao & Li, gen. nov. with the type species Mekonglema bailang Zhao & Li, sp. nov. (♂♀, Yunnan, China), Siamlema Zhao & Li, gen. nov. with the type species Siamlema changhai Zhao & Li, sp. nov. (♂♀, southern Thailand), Sundalema Zhao & Li, gen. nov. with the type species Sundalema bonjol Zhao & Li, sp. nov. (♂♀, Sumatra), and Zhuanlema Zhao & Li, gen. nov. with the type species Zhuanlema peteri Zhao & Li, sp. nov. (♂♀, northern Laos). Eight additional new species are described: Mekonglema kaorao Zhao & Li, sp. nov. (♂♀, northern Laos), M. walayaku Zhao & Li, sp. nov. (♂♀, Yunnan, China), M. yan Zhao & Li, sp. nov. (♂♀, Yunnan, China), Pinelema daguaiwan Zhao & Li, sp. nov. (♂♀, Guangxi, China), P. shiba Zhao & Li, sp. nov. (♂♀, Guangxi, China), P. tham Zhao & Li, sp. nov. (♂♀, northern Laos), Siamlema suea Zhao & Li, sp. nov. (♂♀, southern Thailand), and Sundalema khaorakkiat Zhao & Li, sp. nov. (♂♀, southern Thailand). Thirty species are transferred from the genus Telema Simon, 1882 to the genera Pinelema Wang & Li, 2012, Sundalemagen. nov., and Telemofila Wunderlich, 1995. Seychellia xinpingi Lin & Li, 2008 is transferred to Mekonglemagen. nov. as M. xinpingicomb. nov. Furthermore, the genus Pinelema is divided into seven species groups based on male morphological characters.


Author(s):  
Stuart A. Halse ◽  
Koen Martens

Five new species in four new genera from Western Australia are described. All species have valve characters that are reminiscent of the genus Heterocypris Claus, 1892 and also have similar valve outlines, with highly arched valves. However, all species have a hemipenis morphology that is totally different from the typical form in Heterocypris. In Patcypris gen. nov. (with type species P. outback gen. et sp. nov.), the lateral lobe is large and shaped as a pickaxe, while the medial lobe is divided into two distal lobes. Trilocypris gen. nov. (with type species T. horwitzi gen. et sp. nov.) is characterised by a hemipenis that has three, instead of two, distal lobes. In Bilocypris gen. nov. (with type species B. fortescuensis gen. et sp. nov. and a second species, B. mandoraensis gen. et sp. nov.), the lateral lobe of the hemipenis is spatulate, rather than boot-shaped, and the medial lobe is bilobed. Billcypris gen. nov. (with type species B. davisae gen. et sp. nov.) has a large and sub-rectangular lateral lobe and a pointed medial lobe. We discuss the taxonomic value of the traditional and new morphological characters and speculate that the diversity of this cluster of genera and species may be greater than currently known.


Sign in / Sign up

Export Citation Format

Share Document