A revision of the genus Seligeria (Seligeriaceae, Bryophyta) in Russia inferred from molecular data

Phytotaxa ◽  
2017 ◽  
Vol 323 (1) ◽  
pp. 27 ◽  
Author(s):  
VLADIMIR E. FEDOSOV ◽  
ALINA V. FEDOROVA ◽  
ELENA A. IGNATOVA ◽  
MICHAEL S. IGNATOV

The genus Seligeria is revised based on morphological and DNA sequence data of nuclear ITS and chloroplastic trnL-F. Fifteen species from most infrageneric units of the genus are recovered in two well supported phylogenetic clusters that are also distinctive in morphology. The clade with the type species of the genus, S. pusilla, includes also S. donniana, S. brevifolia, S. calcarea, S. patula, S. tristichoides, S. trifaria, and S. oelandica. These species are characterized by short, cupulate or turbinate capsules widened towards the mouth, and the lack of a stem central strand. Another clade includes species with rather long, mainly ovate to cylindrical capsules and more or less developed stem central strand: S. campylopoda, S. recurvata, S. subimmersa, S. diversifolia, and S. polaris. These two clusters do not show sister relationships, but the second one appears more closely related to the Blindia clade. To resolve the apparent paraphyly, the latter phylogenetic group is segregated in a genus Blindiadelphus. In some aspects of morphology and ecology it is intermediate between Seligeria s. str. and Blindia, but differs from both genera in subquadrate upper leaf cells and thin- to moderately thick-walled rectangular exothecial cells. Molecular phylogenetic analyses revealed heterogeneity within the specimens previously referred to Blindiadelphus campylopodus, indicating a presence in Asian Russia of an undescribed species that is described here as Blindiadelphus sibiricus. It differs from B. campylopodus by the larger spores and typically rounded leaf apices. The isotype specimen of S. galinae appeared to be nearly identical to S. donniana in the sequences of ITS and trnL-F, and examination of morphology revealed no substantial differences between these species. Thus, we consider S. galinae as a synonym of S. donniana. The genus Blindiadelphus includes species of Seligeria subg. Blindiadelphus and S. subg. Cyrtoseligeria, which however are found intermingled in the molecular phylogenetic analysis. Thus the genus Blindiadelphus is accepted without any infrageneric taxa. The phylogenetic tree is congruent with the subdivision of the genus Seligeria s.str into subg. Seligeria, subg. Anodon, subg. Megalosporia and one newly established subgenus Robustidontia for S. brevifolia.

2014 ◽  
Vol 62 (3) ◽  
pp. 235 ◽  
Author(s):  
S. Safaei Chaei Kar ◽  
F. Ghanavati ◽  
M. R. Naghavi ◽  
H. Amirabadi-zade ◽  
R. Rabiee

Onobrychis, comprising more than 130 species, is a genus of the family Fabaceae. At this time, the interspecies relationship of this biologically important genus is still a subject of great discussion and debate. To help resolve this disagreement, we used molecular phylogeny to analyse internal transcribed spacer (ITS) and trnL–trnF sequences of 76 species of Onobrychis. Bayesian interference, maximum parsimony and maximum likelihood analyses of nuclear ITS and plastid trnL–trnF DNA sequence data generated trees with strong posterior probability for two groups: Onobrychis subgen. Sisyrosema (including: Heliobrychis, Hymenobrychis, Afghanicae and Anthyllium sections) along with Laxiflorae section in Group I and Onobrychis subgen. Onobrychis (except Laxiflorae section) in the other (Group II). The Laxiflorae section roots back to the ancestral node for Sisyrosema subgen. O. viciifolia (cultivated species), which is closely associated with O. cyri var. cyri, suggesting that the latter may be a wild progenitor of O. viciifolia. The present study supported the paraphyly of subgenera Onobrychis and Sisyrosema. The study proposed the paraphyletic nature of the sections Onobrychis, Dendrobrychis, Heliobrychis and Hymenobrychis. Together with our molecular phylogenetic analyses we present a review of Onobrychis morphology and discuss and compare our results with those of earlier morphological and molecular phylogenetic analyses.


Phytotaxa ◽  
2014 ◽  
Vol 161 (2) ◽  
pp. 157 ◽  
Author(s):  
Sinang Hongsanan ◽  
Putarak Chomnunti ◽  
Pedro W. Crous ◽  
Ekachai Chukeatirote ◽  
Kevin D. Hyde

The order Microthyriales comprises foliar biotrophs, epiphytes, pathogens or saprobes that occur on plant leaves and stems. The order is relatively poorly known due to limited sampling and few in-depth studies. There is also a lack of phylogenetic data for these fungi, which form small black spots on plant host surfaces, but rarely cause any damage to the host. A "Microthyriaceae"-like fungus collected in central Thailand is described as a new genus, Chaetothyriothecium (type species Chaetothyriothecium elegans sp. nov.). Phylogenetic analyses of LSU gene data showed this species to cluster with other members of Microthyriales, where it is related to Microthyrium microscopicum the type of the order. The description of the new species is supplemented by DNA sequence data, which resolves its placement in the order. Little molecular data is available for this order, stressing the need for further collections and molecular data.


2016 ◽  
Vol 48 (5) ◽  
pp. 387-421 ◽  
Author(s):  
Daphne F. STONE ◽  
James W. HINDS ◽  
Frances L. ANDERSON ◽  
James C. LENDEMER

AbstractA revision of the North American members of the Leptogium saturninum group (i.e. species with long lower-surface hairs, isidia, and usually smooth upper surface) is presented based on molecular phylogenetic analyses of mtSSU and nrITS sequence data, together with an extensive morphological study. Three species supported by both molecular and morphological characteristics are recognized: L. acadiense sp. nov. (distinguished by granular saturninum-type isidia, medulla composed of irregularly arranged or perpendicular hyphae), L. cookii sp. nov. (distinguished by cylindrical saturninum-type isidia) and L. hirsutum (distinguished by hirsutum-type isidia and medulla composed of loosely intertwined hyphae). One species supported by morphological characteristics, but for which no molecular data could be generated, is also recognized: L. compactum sp. nov. (distinguished by hirsutum-type isidia and medulla composed of tightly packed hyphae). Finally, L. saturninum (distinguished by granular saturninum-type isidia and medulla composed of perpendicular and parallel hyphae) is supported by morphological characteristics but molecular data from geographically diverse populations, including those near the type locality, indicate that the morphologically defined species is paraphyletic. Leptogium burnetiae is excluded from North American based on morphological study of the type. The species are described and illustrated in detail, and are distinguished morphologically by their isidium development, morphology of mature isidia, and pattern of hyphae in the medulla in transverse sections near lobe margins. A key to the members of the L. saturninum group and related species is also presented.


Phytotaxa ◽  
2018 ◽  
Vol 350 (1) ◽  
pp. 42 ◽  
Author(s):  
GALINA V. DEGTJAREVA ◽  
MICHAEL G. PIMENOV ◽  
TAHIR H. SAMIGULLIN

The systematic position of three Apiaceae-Apioideae taxa, Pinacantha porandica, Ladyginia bucharica and Peucedanum mogoltavicum, from Middle Asia and Afghanistan, is clarified based on nrITS DNA sequence data. In the molecular phylogenetic tree, the monotypic Pinacantha is placed in unresolved position within the Ferulinae. Although there is no morphological information on essential characters, we propose a new position of Pinacantha porandica within the genus Ferula. As a result a new combination Ferula porandica is proposed, with a new section Pinacantha to accommodate it. The attribution of Peucedanum mogoltavicum to Ferula has been confirmed, its correct name being Ferula lithophila. The genus Ladyginia should not be included in Ferula, its closest relatives being Mozaffariania and Glaucosciadium from the Glaucosciadium Clade.


2004 ◽  
Vol 17 (2) ◽  
pp. 145 ◽  
Author(s):  
Randall L. Small ◽  
Richard C. Cronn ◽  
Jonathan F. Wendel

Molecular data have had a profound impact on the field of plant systematics, and the application of DNA-sequence data to phylogenetic problems is now routine. The majority of data used in plant molecular phylogenetic studies derives from chloroplast DNA and nuclear rDNA, while the use of low-copy nuclear genes has not been widely adopted. This is due, at least in part, to the greater difficulty of isolating and characterising low-copy nuclear genes relative to chloroplast and rDNA sequences that are readily amplified with universal primers. The higher level of sequence variation characteristic of low-copy nuclear genes, however, often compensates for the experimental effort required to obtain them. In this review, we briefly discuss the strengths and limitations of chloroplast and rDNA sequences, and then focus our attention on the use of low-copy nuclear sequences. Advantages of low-copy nuclear sequences include a higher rate of evolution than for organellar sequences, the potential to accumulate datasets from multiple unlinked loci, and bi-parental inheritance. Challenges intrinsic to the use of low-copy nuclear sequences include distinguishing orthologous loci from divergent paralogous loci in the same gene family, being mindful of the complications arising from concerted evolution or recombination among paralogous sequences, and the presence of intraspecific, intrapopulational and intraindividual polymorphism. Finally, we provide a detailed protocol for the isolation, characterisation and use of low-copy nuclear sequences for phylogenetic studies.


Zootaxa ◽  
2007 ◽  
Vol 1493 (1) ◽  
pp. 41-51 ◽  
Author(s):  
ELI GREENBAUM ◽  
AARON M. BAUER ◽  
TODD R. JACKMAN ◽  
MIGUEL VENCES ◽  
FRANK GLAW

Since its discovery in the 17th century, the morphological peculiarities of the gekkonid lizard genus Uroplatus have generated a great deal of attention. A large number of skeletal, integumentary and visceral features are autapomorphic for the genus and some of the more well-known members of the group possess such aberrant characteristics that a separate family was once recognized to accommodate them. Recent phylogenetic analyses confirm that Uroplatus is a typical gekkonid gecko, but the specific affinities of the genus, as well as its intrageneric relationships have remained unresolved. Both nuclear (RAG-1 and PDC) and mitochondrial (ND2 and cyt b) genes (~3.2 Kb) were sequenced for 10 of 13 recognized species of Uroplatus, as well as two Madagascan and mainland African outgroups. The large-bodied forms of Uroplatus (U. fimbriatus, U. giganteus, U. henkeli, and U. sikorae) form a monophyletic group, and the smallbodied, short-tailed species are also monophyletic (U. ebenaui and U. phantasticus). Uroplatus alluaudi + U. pietschmanni comprise another distinct clade, whereas U. lineatus was weakly supported as the sister taxon of the largebodied clade and U. guentheri was sister to all other members of the genus. Our phylogenetic hypothesis based on combined DNA sequence data is mostly congruent with previous hypotheses based on morphological data. Based on a larger, more inclusive dataset, the closest relatives of Uroplatus are mainland African Afrogecko and Madagascan Matoatoa, suggesting that the diverse Malagasy gecko fauna does not comprise a single evolutionary lineage. A high diversity of new taxa (either representing synonyms to resurrect or undescribed species), morphologically similar either to U. ebenaui/phantasticus or to U. henkeli/sikorae, was apparent from our data. Many of these genetically highly divergent lineages originated from localities in northern Madagascar, which indicates this region as the possible center of diversity and endemism for several subgroups of Uroplatus.


2019 ◽  
Vol 42 (1) ◽  
pp. 228-260 ◽  
Author(s):  
H. Voglmayr ◽  
M.B. Aguirre-Hudson ◽  
H.G. Wagner ◽  
S. Tello ◽  
W.M. Jaklitsch

Based on DNA sequence data, the genus Leptosillia is shown to belong to the Xylariales. Molecular phylogenetic analyses of ITS-LSU rDNA sequence data and of a combined matrix of SSU-ITS-LSU rDNA, rpb1, rpb2, tef1 and tub2 reveal that the genera Cresporhaphis and Liberomyces are congeneric with Leptosillia. Coelosphaeria fusariospora, Leptorhaphis acerina, Leptorhaphis quercus f. macrospora, Leptorhaphis pinicola, Leptorhaphis wienkampii, Liberomyces pistaciae, Sphaeria muelleri and Zignoëlla slaptonensis are combined in Leptosillia, and all of these taxa except for C. fusariospora, L. pinicola and L. pistaciae are epitypified. Coelosphaeria fusariospora and Cresporhaphis rhoina are lectotypified. Liberomyces macrosporus and L. saliciphilus, which were isolated as phloem and sapwood endophytes, are shown to be synonyms of Leptosillia macrospora and L. wienkampii, respectively. All species formerly placed in Cresporhaphis that are now transferred to Leptosillia are revealed to be non-lichenized. Based on morphology and ecology, Cresporhaphis chibaensis is synonymised with Rhaphidicyrtis trichosporella, and C. rhoina is considered to be unrelated to the genus Leptosillia, but its generic affinities cannot be resolved in lack of DNA sequence data. Phylogenetic analyses place Leptosillia as sister taxon to Delonicicolaceae, and based on morphological and ecological differences, the new family Leptosilliaceae is established. Furfurella, a new genus with the three new species, F. luteostiolata, F. nigrescens and F. stromatica, growing on dead branches of mediterranean fabaceous shrubs from tribe Genisteae, is revealed to be the closest relative of Delonicicola in the family Delonicicolaceae, which is emended. ITS rDNA sequence data retrieved from GenBank demonstrate that the Leptosilliaceae were frequently isolated or sequenced as endophytes from temperate to tropical regions, and show that the genus Leptosillia represents a widely distributed component of endophyte communities of woody plants.


2018 ◽  
Vol 50 (2) ◽  
pp. 173-184 ◽  
Author(s):  
Ave SUIJA ◽  
Ulla KAASALAINEN ◽  
Paul Muigai KIRIKA ◽  
Jouko RIKKINEN

AbstractDuring lichenological explorations of tropical montane forests in Kenya, a remarkable new lichenicolous fungus was repeatedly found growing on thalli of the epiphytic tripartite cyanolichen Crocodia cf. clathrata. Molecular phylogenetic analyses placed the fungus within Gomphillaceae (Ostropales, Lecanoromycetes), a family mainly of lichen-symbiotic species in the tropics. The anatomical features (unitunicate, non-amyloid asci and simple, septate paraphyses) as well as the hemiangiocarpic ascoma development confirm its taxonomic affinity. DNA sequence data showed the closest relationship was with Gyalidea fritzei, followed by Corticifraga peltigerae. A monotypic genus, Taitaia, is introduced to incorporate a single species, T. aurea. The new fungus is characterized by aggregated ascomata with yellow margins and salmon red discs developing from a single base.


2008 ◽  
Vol 33 (3) ◽  
pp. 598-612 ◽  
Author(s):  
Nicholas P. Tippery ◽  
Donald H. Les ◽  
Donald J. Padgett ◽  
Surrey W. L. Jacobs

Menyanthaceae consist of five genera of aquatic and wetland plants distributed worldwide. The three monotypic genera (Liparophyllum, Menyanthes, and Nephrophyllidium) are clearly differentiated morphologically, but the two larger genera (Nymphoides and Villarsia) contain several taxa of uncertain affinity. We undertook a phylogenetic analysis, using a combination of morphological and molecular data, to resolve relationships among species and to evaluate the current circumscription of genera. DNA sequence data for nuclear (ITS) and chloroplast (rbcL and trnK/matK) gene regions were largely congruent (by partition-homogeneity test), and a combined data phylogeny revealed several strongly supported relationships. Analyses using asterid outgroup taxa supported the monophyly of Menyanthaceae. Menyanthes trifoliata and Nephrophyllidium crista-galli comprised a clade sister to the remainder of the family. Species of Nymphoides, except N. exigua, resolved to a single, deeply-nested clade, indicating that the floating-leaved habit is derived evolutionarily within the family. The genus Villarsia comprised a paraphyletic grade toward Nymphoides, wherein the species resolved to three assemblages: (1) a shallowly nested clade containing V. albiflora, V. calthifolia, V. marchantii, V. parnassifolia, V. reniformis, and V. umbricola; (2) an isolated South African clade including V. manningiana and the type species, V. capensis; and (3) a heterogeneous clade of taxa from three genera, including V. exaltata, V. lasiosperma, and V. latifolia, plus the anomalous species V. capitata, V. congestiflora, Liparophyllum gunnii, and Nymphoides exigua. Our results indicate that the genera Menyanthes, Nephrophyllidium, and Nymphoides should be retained as circumscribed, with the exception that Nymphoides exigua should be restored to Villarsia. The genus Villarsia, however, eventually should be subdivided among monophyletic lineages, whereby in the strict sense Villarsia would contain only South African taxa.


MycoKeys ◽  
2018 ◽  
Vol 43 ◽  
pp. 1-21 ◽  
Author(s):  
Malte Ebinghaus ◽  
Wolfgang Maier ◽  
Michael J. Wingfield ◽  
Dominik Begerow

Trees in the genusVachellia(previouslyAcacia) are commonly infected by the gall-inducing rustsRaveneliamacowanianaandR.evansii. Rust galls bearing aecial infections and relating uredinial and telial infections on the leaves of nineVachelliaspecies not previously recorded to be infected byRaveneliaspp. have recently been collected in South Africa. The rust fungi causing these infections were characterised using molecular phylogenetic analyses of DNA sequence data of the LSU and ITS rDNA regions as well as morphological examinations. The host range ofR.macowanianaandR.evansiiwas thus re-assessed and extended from four to nine species and from one to three species, respectively. Application of Principal Component Analyses (PCA) of telial morphological characters provided evidence of an effect of the host species on the teliospore morphology inR.evansii, but only minor effects inR.macowaniana. A novel gall-inducingRaveneliasp. closely related toR.macowaniana, was found onVachelliaxanthophloeaand it is described here asR.xanthophloeae.


Sign in / Sign up

Export Citation Format

Share Document