scholarly journals Identification of a Novel Gene, Slc39a8, Encoding Zinc Transporter Specific to Treg Cells by Integrative Bioinformatic Analysis and Its Functional Validation

2019 ◽  
Vol 7 (2) ◽  
pp. 22
Author(s):  
Dong Woo Ko ◽  
Jeesang Yoon ◽  
Jung Jin Yang
2020 ◽  
Vol 21 (6) ◽  
pp. 834-853 ◽  
Author(s):  
Ming‐Zhe Zhang ◽  
Chen‐Hao Sun ◽  
Yue Liu ◽  
Hui‐Qiang Feng ◽  
Hao‐Wu Chang ◽  
...  

Author(s):  
Liangping Su ◽  
Deng Chen ◽  
Jianming Zhang ◽  
Ximing Li ◽  
Guihong Pan ◽  
...  

2012 ◽  
Vol 102 (3) ◽  
pp. 252-259 ◽  
Author(s):  
Yancun Zhao ◽  
Guoliang Qian ◽  
Jiaqin Fan ◽  
Fangqun Yin ◽  
Yijin Zhou ◽  
...  

Virulence factors of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak in rice, are regulated by a diffusible signal factor (DSF)-dependent quorum-sensing (QS) system. In this study, a novel pathogenicity-related gene, Xoryp_010100018570 (named hshB), of X. oryzae pv. oryzicola was characterized. hshB encodes a hydrolase with a putative signal peptide, which is a homolog of imidazolonepropionase. Bioinformatic analysis showed that hshB is relatively conserved in the genus Xanthomonas but the homologous gene of hshB was not found in X. oryzae pv. oryzae. Reverse-transcription polymerase chain reaction (PCR) analysis showed that hshB and its upstream gene, Xoryp_010100018565 (named hshA), are co-transcribed in X. oryzae pv. oryzicola. Subsequent experimental results indicated that mutation of hshB remarkably impaired the virulence, extracellular protease activity, extracellular polysaccharide production, growth in minimal medium, and resistance to oxidative stress and bismerthiazol of X. oryzae pv. oryzicola. Mutation of clp, encoding a global regulator, resulted in similar phenotypes. Real-time PCR assays showed that hshB transcription is positively regulated by clp and DSF, and induced by poor nutrition. Our study not only found a novel gene hshB regulated by DSF-dependent QS system and clp but also showed that hshB was required for virulence of X. oryzae pv. oryzicola.


2007 ◽  
Vol 1 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Xiangyang Bai ◽  
Duozhuang Tang ◽  
Tao Zhu ◽  
Lishi Sun ◽  
Lingling Yan ◽  
...  

2015 ◽  
Vol 83 (10) ◽  
pp. 3902-3908 ◽  
Author(s):  
Ying Sheng ◽  
Fenxia Fan ◽  
Owen Jensen ◽  
Zengtao Zhong ◽  
Biao Kan ◽  
...  

Zinc is an essential trace metal required for numerous cellular processes in all forms of life. In order to maintain zinc homeostasis, bacteria have developed several transport systems to regulate its uptake. In this study, we investigated zinc transport systems in the enteric pathogenVibrio cholerae, the causative agent of cholera. Bioinformatic analysis predicts that two gene clusters, VC2081 to VC2083 (annotated as zinc utilization genesznuABC) and VC2551 to VC2555 (annotated aszinc-regulatedgeneszrgABCDE), are regulated by the putative zinc uptake regulator Zur. Using promoter reporter and biochemical assays, we confirmed that Zur repressesznuABCandzrgABCDEpromoters in a Zn2+-dependent manner. Under Zn2+-limiting conditions, we found that mutations in either theznuABCorzrgABCDEgene cluster affect bacterial growth, withznuABCmutants displaying a more severe growth defect, suggesting that both ZnuABC and ZrgABCDE are involved in Zn2+uptake and that ZnuABC plays the predominant role. Furthermore, we reveal that ZnuABC and ZrgABCDE are important forV. choleraecolonization in both infant and adult mouse models, particularly in the presence of other intestinal microbiota. Collectively, our studies indicate that these two zinc transporter systems play vital roles in maintaining zinc homeostasis duringV. choleraegrowth and pathogenesis.


2010 ◽  
Vol 34 (8) ◽  
pp. S50-S50
Author(s):  
Jing Li ◽  
Dongxia Hao ◽  
Weiwei Deng ◽  
Na Li ◽  
Shai Guo ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 436-436
Author(s):  
John A. Petros ◽  
Audry N. Schuetz ◽  
Andrew N. Young ◽  
Q. Yin Goen ◽  
So Dug Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document