scholarly journals Role of Stretch on Tight Junction Structure in Alveolar Epithelial Cells

2001 ◽  
Vol 25 (5) ◽  
pp. 584-591 ◽  
Author(s):  
Kenneth J. Cavanaugh ◽  
Jane Oswari ◽  
Susan S. Margulies
2004 ◽  
Vol 72 (3) ◽  
pp. 1767-1774 ◽  
Author(s):  
Beatriz de Astorza ◽  
Guadalupe Cortés ◽  
Catalina Crespí ◽  
Carles Saus ◽  
José María Rojo ◽  
...  

ABSTRACT The airway epithelium represents a primary site for contact between microbes and their hosts. To assess the role of complement in this event, we studied the interaction between the A549 cell line derived from human alveolar epithelial cells and a major nosocomial pathogen, Klebsiella pneumoniae, in the presence of serum. In vitro, we found that C3 opsonization of poorly encapsulated K. pneumoniae clinical isolates and an unencapsulated mutant enhanced dramatically bacterial internalization by A549 epithelial cells compared to highly encapsulated clinical isolates. Local complement components (either present in the human bronchoalveolar lavage or produced by A549 epithelial cells) were sufficient to opsonize K. pneumoniae. CD46 could competitively inhibit the internalization of K. pneumoniae by the epithelial cells, suggesting that CD46 is a receptor for the binding of complement-opsonized K. pneumoniae to these cells. We observed that poorly encapsulated strains appeared into the alveolar epithelial cells in vivo but that (by contrast) they were completely avirulent in a mouse model of pneumonia compared to the highly encapsulated strains. Our results show that bacterial opsonization by complement enhances the internalization of the avirulent microorganisms by nonphagocytic cells such as A549 epithelial cells and allows an efficient innate defense.


2006 ◽  
Vol 82 (3) ◽  
pp. 351-354 ◽  
Author(s):  
M. E. Pero ◽  
N. Mirabella ◽  
P. Lombardi ◽  
C. Squillacioti ◽  
A. De Luca ◽  
...  

AbstractIn the present study, the rôle of gammaglutamyltransferase (GGT) during lactation has been investigated in the water buffalo. GGT activity has been evaluated in the mammary tissue at 4 and 6 months after calving and during the non-lactating period. The highest GGT activity levels were found at day 120 (32·57±7·41 U per g) of lactation and were statistically higher than those at 180 (10·76±3·6 U per g) or during the non-lactating period (9·86±7·94 U per g). Histochemistry confirmed these findings and revealed that GGT reactivity was distributed throughout the cytoplasm of alveolar epithelial cells. Such results showed that the GGT production is high during lactation thus supporting the hypothesis that this enzyme plays a rôle in determining milk production in water buffalo by supporting milk protein synthesis.


PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27469 ◽  
Author(s):  
Hewan A. Belete ◽  
Rolf D. Hubmayr ◽  
Shaohua Wang ◽  
Raman-Deep Singh

2011 ◽  
Vol 301 (1) ◽  
pp. L40-L49 ◽  
Author(s):  
Leslie A. Mitchell ◽  
Christian E. Overgaard ◽  
Christina Ward ◽  
Susan S. Margulies ◽  
Michael Koval

Alveolar barrier function depends critically on the claudin family tight junction proteins. Of the major claudins expressed by alveolar epithelial cells, claudin (Cldn)-3 and Cldn-4 are the most closely related by amino acid homology, yet they differ dramatically in the pattern of expression. Previously published reports have shown that Cldn-3 is predominantly expressed by type II alveolar epithelial cells; Cldn-4 is expressed throughout the alveolar epithelium and is specifically upregulated in response to acute lung injury. Using primary rat alveolar epithelial cells transduced with yellow fluorescent protein-tagged claudin constructs, we have identified roles for Cldn-3 and Cldn-4 in alveolar epithelial barrier function. Surprisingly, increasing expression of Cldn-3 decreased alveolar epithelial barrier function, as assessed by transepithelial resistance and dye flux measurements. Conversely, increasing Cldn-4 expression improved alveolar epithelial transepithelial resistance compared with control cells. Other alveolar epithelial tight junction proteins were largely unaffected by increased expression of Cldn-3 and Cldn-4. Taken together, these results demonstrate that, in the context of the alveolar epithelium, Cldn-3 and Cldn-4 have different effects on paracellular permeability, despite significant homology in their extracellular loop domains.


Author(s):  
Sonia Garcia-Hernandez ◽  
Ricardo Gutierrez ◽  
Lucio Diaz-Flores ◽  
Jesus Villar ◽  
Francisco Valladares

1999 ◽  
Vol 277 (3) ◽  
pp. L606-L615 ◽  
Author(s):  
Noritaka Isowa ◽  
Alexandre M. Xavier ◽  
Ewa Dziak ◽  
Michal Opas ◽  
Donna I. McRitchie ◽  
...  

Lipopolysaccharide (LPS) polymerizes microfilaments and microtubules in macrophages and monocytes. Disrupting microfilaments or microtubules with cytochalasin D (CytoD) or colchicine can suppress LPS-induced tumor necrosis factor-α (TNF-α) gene expression and protein production from these cells. We have recently demonstrated that primary cultured rat alveolar epithelial cells can produce TNF-α on LPS stimulation. In the present study, we found that the LPS-induced increase in TNF-α mRNA level and protein production in alveolar epithelial cells was not inhibited by CytoD or colchicine (1 nM to 10 μM). In fact, LPS-induced TNF-α production was further enhanced by CytoD (1–10 μM) and inhibited by jasplakinolide, a polymerizing agent for microfilaments. Immunofluorescent staining and confocal microscopy showed that LPS (10 μg/ml) depolymerized microfilaments and microtubules within 15 min, which was prolonged until 24 h for microfilaments. These results suggest that the effects of LPS on the cytoskeleton and the role of the cytoskeleton in mediating TNF-α production in alveolar epithelial cells are opposite to those in immune cells. This disparity may reflect the different roles between nonimmune and immune cells in host defense.


2021 ◽  
Vol 320 (4) ◽  
pp. L627-L639
Author(s):  
Xiaoqian Shi ◽  
Xiaojie An ◽  
Liu Yang ◽  
Zhipeng Wu ◽  
Danni Zan ◽  
...  

Acute respiratory distress syndrome (ARDS) is characterized by acute lung injury (ALI) secondary to an excessive alveolar inflammatory response. Reticulocalbin 3 (Rcn3) is an endoplasmic reticulum (ER) lumen protein in the secretory pathway. We previously reported the indispensable role of Rcn3 in type II alveolar epithelial cells (AECIIs) during lung development and the lung injury repair process. In the present study, we further observed a marked induction of Rcn3 in the alveolar epithelium during LPS-induced ALI. In vitro alveolar epithelial (MLE-12) cells consistently exhibited a significant induction of Rcn3 accompanied with NF-κB activation in response to LPS exposure. We examined the role of Rcn3 in the alveolar inflammatory response by using mice with a selective deletion of Rcn3 in alveolar epithelial cells upon doxycycline administration. The Rcn3 deficiency significantly blunted the ALI and alveolar inflammation induced by intratracheal LPS instillation but not that induced by an intraperitoneal LPS injection (secondary insult); the alleviated ALI was accompanied by decreases in NF-κB activation and NLRP3 levels but not in GRP78 and cleaved caspase-3 levels. The studies conducted in MLE-12 cells consistently showed that Rcn3 knockdown blunted the activations of NF-κB signaling and NLRP3-dependent inflammasome upon LPS exposure. Collectively, these findings suggest a novel role for Rcn3 in regulating the alveolar inflammatory response to pulmonary infection via the NF-κB/NLRP3/inflammasome axis and shed additional light on the mechanism of ARDS/ALI.


Sign in / Sign up

Export Citation Format

Share Document