scholarly journals Serotonin-Induced Growth of Pulmonary Artery Smooth Muscle Requires Activation of Phosphatidylinositol 3-Kinase/Serine-Threonine Protein Kinase B/Mammalian Target of Rapamycin/p70 Ribosomal S6 Kinase 1

2006 ◽  
Vol 34 (2) ◽  
pp. 182-191 ◽  
Author(s):  
Yinglin Liu ◽  
Barry L. Fanburg
2009 ◽  
Vol 421 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Juan M. García-Martínez ◽  
Jennifer Moran ◽  
Rosemary G. Clarke ◽  
Alex Gray ◽  
Sabina C. Cosulich ◽  
...  

mTOR (mammalian target of rapamycin) stimulates cell growth by phosphorylating and promoting activation of AGC (protein kinase A/protein kinase G/protein kinase C) family kinases such as Akt (protein kinase B), S6K (p70 ribosomal S6 kinase) and SGK (serum and glucocorticoid protein kinase). mTORC1 (mTOR complex-1) phosphorylates the hydrophobic motif of S6K, whereas mTORC2 phosphorylates the hydrophobic motif of Akt and SGK. In the present paper we describe the small molecule Ku-0063794, which inhibits both mTORC1 and mTORC2 with an IC50 of ∼10 nM, but does not suppress the activity of 76 other protein kinases or seven lipid kinases, including Class 1 PI3Ks (phosphoinositide 3-kinases) at 1000-fold higher concentrations. Ku-0063794 is cell permeant, suppresses activation and hydrophobic motif phosphorylation of Akt, S6K and SGK, but not RSK (ribosomal S6 kinase), an AGC kinase not regulated by mTOR. Ku-0063794 also inhibited phosphorylation of the T-loop Thr308 residue of Akt phosphorylated by PDK1 (3-phosphoinositide-dependent protein kinase-1). We interpret this as implying phosphorylation of Ser473 promotes phosphorylation of Thr308 and/or induces a conformational change that protects Thr308 from dephosphorylation. In contrast, Ku-0063794 does not affect Thr308 phosphorylation in fibroblasts lacking essential mTORC2 subunits, suggesting that signalling processes have adapted to enable Thr308 phosphorylation to occur in the absence of Ser473 phosphorylation. We found that Ku-0063794 induced a much greater dephosphorylation of the mTORC1 substrate 4E-BP1 (eukaryotic initiation factor 4E-binding protein 1) than rapamycin, even in mTORC2-deficient cells, suggesting a form of mTOR distinct from mTORC1, or mTORC2 phosphorylates 4E-BP1. Ku-0063794 also suppressed cell growth and induced a G1-cell-cycle arrest. Our results indicate that Ku-0063794 will be useful in delineating the physiological roles of mTOR and may have utility in treatment of cancers in which this pathway is inappropriately activated.


2010 ◽  
Vol 298 (4) ◽  
pp. E761-E769 ◽  
Author(s):  
Cossette Sanchez Canedo ◽  
Bénédicte Demeulder ◽  
Audrey Ginion ◽  
Jose R. Bayascas ◽  
Jean-Luc Balligand ◽  
...  

Like insulin, leucine stimulates the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70S6K) axis in various organs. Insulin proceeds via the canonical association of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent protein kinase-1 (PDK1), and protein kinase B (PKB/Akt). The signaling involved in leucine effect, although known to implicate a PI3K mechanism independent of PKB/Akt, is more poorly understood. In this study, we investigated whether PDK1 could also participate in the events leading to mTOR/p70S6K activation in response to leucine in the heart. In wild-type hearts, both leucine and insulin increased p70S6K activity whereas, in contrast to insulin, leucine was unable to activate PKB/Akt. The changes in p70S6K activity induced by insulin and leucine correlated with changes in phosphorylation of Thr389, the mTOR phosphorylation site on p70S6K, and of Ser2448 on mTOR, both related to mTOR activity. Leucine also triggered phosphorylation of the proline-rich Akt/PKB substrate of 40 kDa (PRAS40), a new pivotal mTOR regulator. In PDK1 knockout hearts, leucine, similarly to insulin, failed to induce the phosphorylation of mTOR and p70S6K, leading to the absence of p70S6K activation. The loss of leucine effect in absence of PDK1 correlated with the lack of PRAS40 phosphorylation. Moreover, the introduction in PDK1 of the L155E mutation, which is known to preserve the insulin-induced and PKB/Akt-dependent phosphorylation of mTOR/p70S6K, suppressed all leucine effects, including phosphorylation of mTOR, PRAS40, and p70S6K. We conclude that the leucine-induced stimulation of the cardiac PRAS40/mTOR/p70S6K pathway requires PDK1 in a way that differs from that of insulin.


Sign in / Sign up

Export Citation Format

Share Document