High-Pressure Melting Curves and Liquid–Liquid Phase Transition

2010 ◽  
Vol 3 (4) ◽  
pp. 527-530 ◽  
Author(s):  
A. R. Imre ◽  
Sylwester J. Rzoska
2021 ◽  
Author(s):  
Xiaobing Fan ◽  
Shikai Xiang ◽  
Lingcang Cai

Abstract It is unclear whether there is a liquid-liquid phase transition or not in the bismuth melt at high temperature and high pressure, if so, it is necessary to confirm the boundary of the liquid-liquid phase transition and clarify whether it is a first-order phase transition. Here based on X-ray absorption spectra and simulations, the temperature dependence of bismuth structures has been investigated under different pressures. According to the similarity of characteristic peaks of X-ray absorption near edge structure (XANES) spectra, we have estimated that the possible temperature ranges of liquid-liquid phase transition are 779 K ~ 799 K at 2.74 GPa and 859 K ~ 879 K at 2.78 GPa, 809 K ~ 819 K at 3.38 GPa and 829 K ~ 839 K at 3.39 GPa and 729 K ~ 739 K at 4.78 GPa, respectively. Using ab initio molecular dynamics (AIMD) simulations, we have obtained the stable structures of the bismuth melt at different temperatures and pressures and calculated their electronic structures. Meanwhile, two stable phases (phase III-like and phase IV-like) of bismuth melts are obtained from different initial phases of bismuth solids (phase III and phase IV) under the same condition (3.20 GPa and 800 K). Assuming that the bismuth melt undergoes a phase transition from IV-like to III-like between 809 K and 819 K at 3.38 GPa, the calculated electronic structures are consistent with XANES spectra, which provides a possible explanation for the first-order liquid-liquid phase transition.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 602
Author(s):  
Elmar C. Fuchs ◽  
Jakob Woisetschläger ◽  
Adam D. Wexler ◽  
Rene Pecnik ◽  
Giuseppe Vitiello

A horizontal electrohydrodynamic (EHD) liquid bridge (also known as a “floating water bridge”) is a phenomenon that forms when high voltage DC (kV·cm−1) is applied to pure water in two separate beakers. The bridge, a free-floating connection between the beakers, acts as a cylindrical lens and refracts light. Using an interferometric set-up with a line pattern placed in the background of the bridge, the light passing through is split into a horizontally and a vertically polarized component which are both projected into the image space in front of the bridge with a small vertical offset (shear). Apart from a 100 Hz waviness due to a resonance effect between the power supply and vortical structures at the onset of the bridge, spikes with an increased refractive index moving through the bridge were observed. These spikes can be explained by an electrically induced liquid–liquid phase transition in which the vibrational modes of the water molecules couple coherently.


2016 ◽  
Vol 144 (14) ◽  
pp. 144504 ◽  
Author(s):  
Rakesh S. Singh ◽  
John W. Biddle ◽  
Pablo G. Debenedetti ◽  
Mikhail A. Anisimov

Sign in / Sign up

Export Citation Format

Share Document