Updated Tool Path Model Including Rotating Speed for Cutting Force Prediction in High-Speed Milling

2012 ◽  
Vol 15 (1) ◽  
pp. 451-455 ◽  
Author(s):  
Qinghua Song ◽  
Xing Ai
2011 ◽  
Vol 418-420 ◽  
pp. 840-843
Author(s):  
Qing Hua Song ◽  
Xing Ai

The efficiency of the high-speed milling process is often limited by the occurrence of chatter. In order to predict the occurrence of chatter, accurate models are necessary. With the speed increasing, gyroscopic effect plays an important pole on the system behavior, including dynamic characteristic and rotating behavior. Considering the influence of gyroscopic effect on rotating behavior, an updated model for the milling process is presented which features as model of the equivalent profile of tool. In combination with this model, a nonlinear instantaneous cutting force model is proposed. The use of this updated equivalent profile of tool results in significant differences in the static uncut thickness compared to the traditional model.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 326
Author(s):  
Lan Zhang ◽  
Xianbin Sha ◽  
Ming Liu ◽  
Liquan Wang ◽  
Yongyin Pang

In the field of underwater emergency maintenance, submarine pipeline cutting is generally performed by a diamond wire saw. The process, in essence, involves diamond grits distributed on the surface of the beads cutting X56 pipeline steel bit by bit at high speed. To find the effect of the different parameters (cutting speed, coefficient of friction and depth of cut) on cutting force, the finite element (FEA) method and response surface method (RSM) were adopted to obtain cutting force prediction models. The former was based on 64 simulations; the latter was designed according to DoE (Design of Experiments). Confirmation experiments were executed to validate the regression models. The results indicate that most of the prediction errors were within 10%, which were acceptable in engineering. Based on variance analyses of the RSM models, it could be concluded that the depth of the cut played the most important role in determining the cutting force and coefficient the of friction was less influential. Despite making little direct contribution to the cutting force, the cutting speed is not supposed to be high for reducing the coefficient of friction. The cutting force models are instructive in manufacturing the diamond beads by determining the protrusion height of the diamond grits and the future planning of the cutting parameters.


Author(s):  
Zhiyang Yao ◽  
Ajay Joneja

High speed milling (HSM) has great potential use in die/mold cutting, but traditional machining plans do exploit HSM capabilities effectively. An important consideration in HSM is to limit cutting force variations, and one way to do so is to reduce cutter-workpiece engagement (CWE) variations. CWE is measured as the area of the tool instantaneously engaged with the part. Estimating CWE as a function of the tool path requires repeated, expensive computations. This paper develops algorithms for a discretized computational model to make CWE computations for arbitrary shaped parts.


2012 ◽  
Vol 152-154 ◽  
pp. 404-408
Author(s):  
Hong Liang Zhou ◽  
Wei Xiao Tang ◽  
Qing Hua Song

High-speed milling (HSM) has advantages in high productivity high precision and low production cost. Thus it can be widely used in the manufacture industry. However, when the speed of spindle-tool reaches a higher speed range, the gyroscopic effect will become an important part of its stable milling. In this paper, a dynamics model of HSM system was proposed considering the influence of gyroscopic moment due to high rotating speed of end milling. Finite element model (FEM) is used to model the dynamics of a spindle-milling system. It obtains the trajectory of central point in face milling with considering gyroscopic effects through the dynamics model at high speeds. Then the cutting force model will be corrected by the trajectory of face milling. Then the stability lobes diagrams (SLD) was elaborated. Cutting thickness effects have non-negligible impact on stability limitation.


2012 ◽  
Vol 538-541 ◽  
pp. 1369-1372
Author(s):  
Xiao Zheng Xie ◽  
Yun Ping Yao ◽  
Rong Zhen Zhao ◽  
Wu Yin Jin

According to the components, mechanical properties of difficult-to-process material (26NiCrMoV145)as well as characteristics of high-speed machining, modelling and prediction of cutting force in high-speed milling is studied. Based on geometry model of ball end mill edge line, milling force model of helical ball milling cutter is established by theoretical analysis and empirical coefficient. Then, simulation prediction of cutting forece is conducted under different circumstances. The experimental result shows that the predicted cutting force is consistent with experimental data and the established model is reasonable. The article contributes to the milling of difficult-to-process material, which improves security and productive efficiency in processing.


Sign in / Sign up

Export Citation Format

Share Document