Effect of Aluminium Substitution on the Structural, Magnetic and Dielectric Properties of Ba–Zn Hexaferrite Particles Prepared Using Sol–Gel Auto-Combustion Technique

2016 ◽  
Vol 22 (4) ◽  
pp. 864-868
Author(s):  
Chauhan Chetna ◽  
Reshma Nandotaria ◽  
Rajshree Jotania
2015 ◽  
Vol 241 ◽  
pp. 226-236 ◽  
Author(s):  
Neha Solanki ◽  
Rajshree B. Jotania

Influence of Ca substitution on structural, magnetic and dielectric properties of Ba3Co2-xCaxFe24O41(where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), prepared by Sol-Gel auto-combustion method, has been investigated in present studies. The obtained powder was sintered at 950 oC for 4 hrs. in the static air atmosphere. Structural analysis of Ca-doped Ba3Co2-xCaxFe24O41powders revealed pure Z-type hexaferrite phase at low temperature. The frequency dependent dielectric constant (Єʹ) and magnetic properties such as remanent magnetization (Mr), saturation magnetization (Ms) and coercivity (Hc) were studied. It is observed that coercivity increased gradually with increase in calcium content. The real dielectric constant (Єʹ) and dielectric loss tangent (tan δ) were studied in the frequency range of 20Hz to 2MHz. The dielectric parameters for all samples show normal dielectric behavior as observed in hexaferrites. Contents of Paper


MRS Advances ◽  
2019 ◽  
Vol 4 (28-29) ◽  
pp. 1659-1665 ◽  
Author(s):  
Nidhi Sheoran ◽  
Monika Saini ◽  
Ashok Kumar ◽  
Vinod Kumar ◽  
Tanuj Kumar ◽  
...  

AbstractNano-sized BiFeO3 were synthesized by sol-gel auto combustion method and report the effect of different annealing temperature (400 °C, 500 °C, 600 °C) on phase formation, morphology, magnetic and dielectric properties of synthesized bismuth ferrite (BiFeO3) nanoparticles. The phase formation of BFO nanoparticles were confirmed by X-ray diffraction pattern. Further, significant increment in particle size with increasing annealing temperature was estimated by field emission electron microscopy (FESEM). Magnetization curve showed the soft ferromagnetic behavior of the samples annealed at 400 OC and 500 OC that was explained on the basis of disturbance of spiral modulated long range antiferromagnetic order of bulk BFO. Dielectric response revealed decrease in dielectric constant with increasing annealing temperature. BFO is a room-temperature multiferroic material so it is potential candidate for various applications viz. Water waste treatment, gas sensors and photovoltaic cells in rural areas.


RSC Advances ◽  
2018 ◽  
Vol 8 (25) ◽  
pp. 14120-14128 ◽  
Author(s):  
M. A. Dar ◽  
Dinesh Varshney

The room temperature structural, optical and dielectric properties of Mg0.95Mn0.05O and Mg0.95Mn0.01TM0.04O (TM = Co, Ni, and Cu) nanoparticles are reported.


2013 ◽  
Vol 11 (8) ◽  
pp. 1330-1342 ◽  
Author(s):  
Alin Druc ◽  
Anca Dumitrescu ◽  
Adrian Borhan ◽  
Valentin Nica ◽  
Alexandra Iordan ◽  
...  

AbstractNano-sized magnesium ferrites were synthesized by the sol-gel auto-combustion method using a variety of chelating/combustion agents: tartaric acid, citric acid, cellulose, glycine, urea and hexamethylenetetramine. The original purpose of this work was the synthesis of nano-sized magnesium ferrite by using, for the first time, cellulose and hexamethylenetetramine as chelating/combustion agents. Synthesized samples were subjected to different heat treatments at 773 K, 973 K and, respectively 1173 K in air. The disappearance of the organic phase and nitrate phase with the spinel structure formation was monitored by infrared absorption spectroscopy. Spinel structure, crystallite size and cation distribution were evaluated by X-ray diffraction data. The morphology of as-prepared powders was studied using scanning electron microscopy. The magnetic and dielectric properties were studied for the obtained samples.


2020 ◽  
Vol 10 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Muhammad Hanif bin Zahari ◽  
Beh Hoe Guan ◽  
Lee Kean Chuan ◽  
Afiq Azri bin Zainudin

Background: Rare earth materials are known for its salient electrical insulation properties with high values of electrical resistivity. It is expected that the substitution of rare earth ions into spinel ferrites could significantly alter its magnetic properties. In this work, the effect of the addition of Samarium ions on the structural, morphological and magnetic properties of Ni0.5Zn0.5SmxFe2-xO4 (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) synthesized using sol-gel auto combustion technique was investigated. Methods: A series of Samarium-substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5SmxFe2-xO4 where x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by sol-gel auto-combustion technique. Structural, morphological and magnetic properties of the samples were examined through X-Ray Diffraction (XRD), Field-Emission Scanning Electron Microscope (FESEM) and Vibrating Sample Magnetometer (VSM) measurements. Results: XRD patterns revealed single-phased samples with spinel cubic structure up to x= 0.04. The average crystallite size of the samples varied in the range of 41.8 – 85.6 nm. The prepared samples exhibited agglomerated particles with larger grain size observed in Sm-substituted Ni-Zn ferrite as compared to the unsubstituted sample. The prepared samples exhibited typical soft magnetic behavior as evidenced by the small coercivity field. The magnetic saturation, Ms values decreased as the Sm3+ concentration increases. Conclusion: The substituted Ni-Zn ferrites form agglomerated particles inching towards more uniform microstructure with each increase in Sm3+ substitution. The saturation magnetization of substituted samples decreases with the increase of samarium ion concentration. The decrease in saturation magnetization can be explained based on weak super exchange interaction between A and B sites. The difference in magnetic properties between the samples despite the slight difference in Sm3+ concentrations suggests that the properties of the NiZnFe2O4 can be ‘tuned’, depending on the present need, through the substitution of Fe3+ with rare earth ions.


Sign in / Sign up

Export Citation Format

Share Document