Enhanced Enzymatic Digestibility of Sugarcane Bagasse Pretreated by Ionic Liquids

2015 ◽  
Vol 9 (5) ◽  
pp. 493-501 ◽  
Author(s):  
Wen-Hua Xie ◽  
Bin-Bin Hu ◽  
Xian-Bao Zhang ◽  
Xi-Miao Yi ◽  
Wen-Xing Tan ◽  
...  
Detritus ◽  
2020 ◽  
pp. 106-113
Author(s):  
Longinus Ifeanyi Igbojionu ◽  
Cecilia Laluce ◽  
Edison Pecoraro

Sugarcane bagasse (SB) is made up of cellulose (32-43%), hemicellulose (19-34%) and lignin (14-30%). Due to high recalcitrant nature of SB, pretreatment is required to deconstruct its structure and enrich the cellulosic fraction. A two-stage NaOH and maleic acid pretreatment was applied to SB to enrich its cellulosic fraction. SB used in the present study is composed of cellulose (40.4 wt%), hemicellulose (20.9 wt%), lignin (22.5 wt%) and ash (4.0 wt%). After one-stage NaOH pretreatment, its cellulosic fraction increased to 61.8 wt% and later increased to 80.1 wt% after the second-stage acid pretreatment. Lignin fraction decreased to 3.0 wt% after one-stage NaOH pretreatment and remained unaffected after the acid pretreatment step. Hemicellulose fraction decreased substantially after the second-stage pretreatment with maleic acid. Pretreated SB displayed high crystallinity index and improved enzymatic digestibility. Hydrolysates of pretreated SB contained very low amount of xylose and subsequent fermentation by Saccharomyces cerevisiae -IQAr/45-1 resulted to ethanol level of 8.94 g/L. Maximal ethanol yield of 0.49 g/g (95.8% of theoretical yield) and productivity of 0.28 g/L/h was attained. At the same time, biomass yield and productivity of 0.47 g/g and 0.27 g/L/h respectively were obtained. Two-stage NaOH and maleic acid pretreatment led to ~ two-fold increase in cellulosic fraction and enhanced the enzymatic digestibility of SB up to 70.4%. The resulted enzymatic hydrolysate was efficiently utilized by S. cerevisiae -IQAr/45-1 to produce high yield of ethanol. Thus, optimization of enzymatic hydrolysis at low enzyme loading is expected to further improve the process and reduce cost.


2021 ◽  
Vol 159 ◽  
pp. 113080
Author(s):  
Thaynara C. Pin ◽  
Lívia B. Brenelli ◽  
Viviane M. Nascimento ◽  
Aline C. Costa ◽  
Yunqiao Pu ◽  
...  

2014 ◽  
Vol 70 ◽  
pp. 498-512 ◽  
Author(s):  
Lalehvash Moghaddam ◽  
Zhanying Zhang ◽  
R. Mark Wellard ◽  
John P. Bartley ◽  
Ian M. O'Hara ◽  
...  

2019 ◽  
Author(s):  
◽  
Gcinile Pretty Mdletshe

Lignocellulosic materials have the potential to partly replace fossil-based resources as a source of bio-fuels, bio-chemicals, bio-composites and other bio-products. In this study, ionic liquids (ILs) were used in the pre-treatment of ground sugarcane bagasse (SCB). The ILs used were 1-butyl-3-methylimidazolium hydrogen sulphate or 1-butyl-3-methylimidazolium methyl sulphate at varied times. The ILs were able to remove lignin and hemicellulose from biomass. The IL [bmim][HSO4] had the highest amount of lignin removed after 12 h than all samples. Moreover, it resulted in the greatest cellulose amount. Milled SCB was pre-treated with IL/dimethyl sulphoxide (DMSO) mixtures. The IL [bmim][HSO4] was able to produce cellulose nanocrystals (CNCs) at 90 % IL and 100 % IL. The other IL failed to produce CNCs. Freeze drying the CNC suspension showed morphologies of long fibrous structures and rods which were evident in the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. The crystallinity index of cellulose in the form of CNCs was calculated from powder X-ray diffraction (P-XRD). Thermal analysis of the CNCs was obtained from thermogravimetric analysis (TGA). Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to confirm the absence of lignin and hemicellulose in CNCs. The size distribution of CNCs was obtained by using a dynamic light scattering (DLS) which showed that all the CNCs for the 100 % IL [bmim][HSO4] pre-treatment had a length < 500 nm. It was found that [bmim][HSO4], with no DMSO, was the most effective in terms of cellulose dissolution and the crystal sizes of CNCs. The conversion of cellulose to CNCs was successful with a 80 % and 100 % conversion for 90 % [bmim][HSO4]/DMSO and 100 % [bmim][HSO4], respectively.


2011 ◽  
Vol 4 (1) ◽  
pp. 54 ◽  
Author(s):  
Camila Rezende ◽  
Marisa de Lima ◽  
Priscila Maziero ◽  
Eduardo deAzevedo ◽  
Wanius Garcia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document