Formulation and In Vitro Evaluation of Quercetin Loaded Polymeric Micelles Composed of Pluronic P123 and D-a-Tocopheryl Polyethylene Glycol Succinate

2011 ◽  
Vol 7 (3) ◽  
pp. 358-365 ◽  
Author(s):  
Liyan Zhao ◽  
Yikang Shi ◽  
Shaohua Zou ◽  
Min Sun ◽  
Lingbing Li ◽  
...  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 54
Author(s):  
Nayyer Islam ◽  
Muhammad Irfan ◽  
Salah-Ud-Din Khan ◽  
Haroon Khalid Syed ◽  
Muhammad Shahid Iqbal ◽  
...  

Orodispersible sublingual films (OSFs) composed of hydrophilic polymers were loaded with poloxamer-188 and d-α-tocopheryl polyethylene glycol succinate (TPGS-1000) mixed micelles to improve the oral bioavailability of a poorly soluble drug, ebastine (EBT). Mixed micelles formed by thin-film hydration method were incorporated into orodispersible sublingual film, consisting of HPMC and glycerol, using solvent casting technique. The mixed micelles and films were thoroughly evaluated for physicochemical characterization (size, polydispersity index, zeta potential, entrapment efficiency, thickness, weight, surface pH studies, disintegration time, swelling indices, mechanical properties, FTIR, PXRD, DSC, SEM, AFM, in vitro drug release, in vivo bioavailability, and toxicological studies). The results showed that the average particle size of mixed micelles was 73 nm. The mean zeta potential and PDI of the optimal mixed micelles formulation were −26 mV and 0.16, respectively. Furthermore, the maximum entrapment efficiency 82% was attained. The film’s disintegration time was in the range of 28 to 102 s in aqueous media. The integrity of micelles was not affected upon incorporation in films. Importantly, the micelles-loaded films revealed rapid absorption, high permeability, and increased bioavailability of EBT as compared to the pure drug. The existence of ebastine loaded mixed micelles in the films enhanced the bioavailability about 2.18 folds as compared to pure drug. Further, the results evidently established in-vitro and in-vivo performance of bioavailability enhancement, biocompatibility, and good safety profile of micelles-loaded orodispersible EBT films. Finally, it was concluded that film loaded with poloxamer-188/TPGS-1000 mixed micelles could be an effective carrier system for enhancing the bioavailability of ebastine.


2011 ◽  
Vol 12 (3) ◽  
pp. 1684-1696 ◽  
Author(s):  
Zhihong Liu ◽  
Donghua Liu ◽  
Lili Wang ◽  
Juan Zhang ◽  
Na Zhang

2006 ◽  
Vol 50 (6) ◽  
pp. 2201-2206 ◽  
Author(s):  
Susan L. Ford ◽  
Y. Sunila Reddy ◽  
Maggie T. Anderson ◽  
Sharon C. Murray ◽  
Pedro Fernandez ◽  
...  

ABSTRACT Brecanavir (BCV, 640385) is a novel, potent protease inhibitor (PI) with low nanomolar 50% inhibitory concentrations against PI-resistant human immunodeficiency virus (HIV) in vitro. This phase I, double-blind, randomized, placebo-controlled, two-part single-dose study (first time with humans) was conducted to determine the safety, tolerability, and pharmacokinetics of BCV administered at 10 mg/ml in a tocopherol-polyethylene glycol succinate-polyethylene glycol 400-ethanol 50:40:10 solution. In part 1 of the study, single oral doses of BCV ranged from 25 mg to 800 mg. In part 2, single oral doses of BCV ranged from 10 mg to 300 mg and were coadministered with 100-mg oral ritonavir (RTV) soft gel capsules. Single doses of BCV and BCV/RTV were generally well tolerated. There were no severe adverse events (SAEs), and no subject was withdrawn due to BCV. The most commonly reported drug-related AEs during both parts of the study combined were gastrointestinal disturbances (similar to placebo) and headache. BCV was readily absorbed following oral administration with mean times to maximum concentration from >1 h to 2.5 h in part 1 and from 1.5 h to 3 h in part 2. Administration of BCV without RTV resulted in BCV exposures predicted to be insufficient to inhibit PI-resistant virus based on in vitro data. Coadministration of 300 mg BCV with 100 mg RTV, however, significantly increased the plasma BCV area under the concentration-time curve and maximum concentration 26-fold and 11-fold, respectively, achieving BCV concentrations predicted to inhibit PI-resistant HIV.


Author(s):  
R S Thakur ◽  
A Nayaz ◽  
Y Koushik

In the case of solubility limited absorption, creating supersaturation in the GI fluid is very critical as supersaturation may provide great improvement of oral absorption. The techniques to create the so-called supersaturation in the GI fluid include microemulsions, emulsions, liposomes, complexations, polymeric micelles, and conventional micelles. Ciprofloxacin was chosen because it is practically insoluble in water; hence its salt form is used commercially, which is soluble in water. The objective of the present investigation was to enhance the solubility of Ciprofloxacin by formulating it into microemulsion system. For this purpose, initially, surfactant and cosurfactant were selected based on their HLB value, followed by pseudo-ternary phase diagrams to identify the microemulsion existing zone. Different formulations were developed and evaluated for pH, conductivity, in vitro release and stability. Solubility study was performed for optimized formulation. The pH of the designed formulations varied from 6.02-7.04. This was ideal and near blood pH 7.4. Conductivity data indicated that the microemulsion was of the o/w type. In vitro release of optimized formulation(FM3) was 95.2% as compared to pure drug 46.61% after 90 min and marketed product(salt form) 93.9%. Hence, by formulating into microemulsion, the solubility of ciprofloxacin is significantly enhanced.    


Sign in / Sign up

Export Citation Format

Share Document