Viscoelastic Nanofluid Flow and Radiative Nonlinear Heat Transfer Over a Stretching Sheet

2015 ◽  
Vol 12 (9) ◽  
pp. 2385-2394
Author(s):  
Md. S. Ansari ◽  
R. Nandkeolyar ◽  
S. S. Motsa ◽  
P. Sibanda
Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1171
Author(s):  
Umair Rashid ◽  
Dumitru Baleanu ◽  
Azhar Iqbal ◽  
Muhammd Abbas

Magnetohydrodynamic nanofluid technologies are emerging in several areas including pharmacology, medicine and lubrication (smart tribology). The present study discusses the heat transfer and entropy generation of magnetohydrodynamic (MHD) Ag-water nanofluid flow over a stretching sheet with the effect of nanoparticles shape. Three different geometries of nanoparticles—sphere, blade and lamina—are considered. The problem is modeled in the form of momentum, energy and entropy equations. The homotopy analysis method (HAM) is used to find the analytical solution of momentum, energy and entropy equations. The variations of velocity profile, temperature profile, Nusselt number and entropy generation with the influences of physical parameters are discussed in graphical form. The results show that the performance of lamina-shaped nanoparticles is better in temperature distribution, heat transfer and enhancement of the entropy generation.


2020 ◽  
Vol 4 (1) ◽  
pp. 3 ◽  
Author(s):  
Alias Jedi ◽  
Azhari Shamsudeen ◽  
Noorhelyna Razali ◽  
Haliza Othman ◽  
Nuryazmin Ahmat Zainuri ◽  
...  

This paper reports the use of a numerical solution of nanofluid flow. The boundary layer flow over a stretching sheet in combination of two nanofluids models is studied. The partial differential equation that governs this model was transformed into a nonlinear ordinary differential equation by using similarity variables, and the numerical results were obtained by applying the shooting technique. Copper (Cu) nanoparticles (water-based fluid) were used in this study. This paper presents and discusses all numerical results, including those for the local Sherwood number and the local Nusselt number. Additionally, the effects of the nanoparticle volume fraction, Brownian motion Nb, and thermophoresis Nt on the performance of heat transfer are discussed. The results show that the stretching sheet has a unique solution: as the nanoparticle volume fraction φ (φ = 0), Nt (Nt = 0.1), and Nb decrease, the rate of heat transfer increases. Furthermore, as φ (φ = 0) and Nb decrease, the rate of mass transfer increases. The data of the Nusselt and Sherwood numbers were tested using different statistical distributions, and it is found that both datasets fit the Weibull distribution for different values of Nt and rotating φ.


Sign in / Sign up

Export Citation Format

Share Document