scholarly journals Statistical Modeling for Nanofluid Flow: A Stretching Sheet with Thermophysical Property Data

2020 ◽  
Vol 4 (1) ◽  
pp. 3 ◽  
Author(s):  
Alias Jedi ◽  
Azhari Shamsudeen ◽  
Noorhelyna Razali ◽  
Haliza Othman ◽  
Nuryazmin Ahmat Zainuri ◽  
...  

This paper reports the use of a numerical solution of nanofluid flow. The boundary layer flow over a stretching sheet in combination of two nanofluids models is studied. The partial differential equation that governs this model was transformed into a nonlinear ordinary differential equation by using similarity variables, and the numerical results were obtained by applying the shooting technique. Copper (Cu) nanoparticles (water-based fluid) were used in this study. This paper presents and discusses all numerical results, including those for the local Sherwood number and the local Nusselt number. Additionally, the effects of the nanoparticle volume fraction, Brownian motion Nb, and thermophoresis Nt on the performance of heat transfer are discussed. The results show that the stretching sheet has a unique solution: as the nanoparticle volume fraction φ (φ = 0), Nt (Nt = 0.1), and Nb decrease, the rate of heat transfer increases. Furthermore, as φ (φ = 0) and Nb decrease, the rate of mass transfer increases. The data of the Nusselt and Sherwood numbers were tested using different statistical distributions, and it is found that both datasets fit the Weibull distribution for different values of Nt and rotating φ.

2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
M. Sheikholeslami ◽  
H. R. Ashorynejad ◽  
G. Domairry ◽  
I. Hashim

The aim of the present paper is to study the flow of nanofluid and heat transfer characteristics between two horizontal plates in a rotating system. The lower plate is a stretching sheet and the upper one is a solid porous plate. Copper (Cu) as nanoparticle and water as its base fluid have been considered. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations with the appropriate boundary conditions using similarity transformation, which is then solved analytically using the homotopy analysis method (HAM). Comparison between HAM and numerical solutions results showed an excellent agreement. The results for the flow and heat transfer characteristics are obtained for various values of the nanoparticle volume fraction, suction/injection parameter, rotation parameter, and Reynolds number. It is shown that the inclusion of a nanoparticle into the base fluid of this problem is capable of causing change in the flow pattern. It is found that for both suction and injection, the heat transfer rate at the surface increases with increasing the nanoparticle volume fraction, Reynolds number, and injection/suction parameter and it decreases with power of rotation parameter.


Author(s):  
Ali R ehman ◽  
Zabidin Salleh ◽  
Taza Gul

This research paper explains the impact of dynamics viscosity of water base GO-EG/GO-W nanofluid over a stretching sheet. The impact of different parameter for velocity and temperature are displayed and discussed. The similarity transformation is used to convert the partial differential equation to nonlinear ordinary differential equation. The solution of the problem is obtained by using the optimal homotopy analysis method (OHAM). The BVPh 2.0 package function of Mathematica is used to obtain the numerical results. The result of important parameter such as magnetic parameter, Prandtl number, Eckert number, dynamic viscosity, nanoparticles volume fraction and unsteady parameter for both velocity and temperature profiles are plotted and discussed. The BVPh 2.0 package is used to obtain the convergences of the problem up to 25 iteration. The skin friction coefficient and Nusselt number is explained in table form.


2016 ◽  
Vol 33 (2) ◽  
pp. 213-224 ◽  
Author(s):  
A. Vijayalakshmi ◽  
S. Srinivas

AbstractThe present study investigates the hydromagnetic pulsating nanofluid flow in a porous channel with thermal radiation. In this work, we considered water as the base fluid and silver (Ag), copper (Cu), alumina (Al2O3) and titanium dioxide (TiO2) as nanoparticles. The Maxwell-Garnetts and Brinkman models are used to evaluate the effective thermal conductivity and viscosity of the nanofluid. The governing equations are solved analytically and the influence of various parameters on velocity, temperature and heat transfer rate has been discussed through graphical results. From the results, it is found that the rate of heat transfer enhances with an increase of nanoparticle volume fraction. Further, the heat transfer rate is higher for silver nanoparticles as compared with copper, alumina and titanium dioxide.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Krishnendu Bhattacharyya ◽  
G. C. Layek

A mathematical model of the steady boundary layer flow of nanofluid due to an exponentially permeable stretching sheet with external magnetic field is presented. In the model, the effects of Brownian motion and thermophoresis on heat transfer and nanoparticle volume friction are considered. Using shooting technique with fourth-order Runge-Kutta method the transformed equations are solved. The study reveals that the governing parameters, namely, the magnetic parameter, the wall mass transfer parameter, the Prandtl number, the Lewis number, Brownian motion parameter, and thermophoresis parameter, have major effects on the flow field, the heat transfer, and the nanoparticle volume fraction. The magnetic field makes enhancement in temperature and nanoparticle volume fraction, whereas the wall mass transfer through the porous sheet causes reduction of both. For the Brownian motion, the temperature increases and the nanoparticle volume fraction decreases. Heat transfer rate becomes low with increase of Lewis number. For thermophoresis effect, the thermal boundary layer thickness becomes larger.


2015 ◽  
Vol 93 (12) ◽  
pp. 1477-1485 ◽  
Author(s):  
R. Ahmad ◽  
Waqar A. Khan

The current study deals with two-dimensional unsteady incompressible MHD water-based nanofluid flow over a convectively heated stretching sheet by considering Buongiorno’s model. A uniform magnetic field is applied in the direction normal to the stretching sheet. It is assumed that the lower surface of the sheet is heated by convection by a nanofluid at temperature Tf, which generates the heat transfer coefficient, hf. Uniform temperature and nanofluid volume fraction are assumed at the sheet’s surface and the flux of the nanoparticle is taken to be zero. The assumption of zero nanoparticle flux at the sheet’s surface makes the model physically more realistic. The effects of the uniform heat source–sink are included in the energy equation. With the help of similarity transformations, the partial differential equations of momentum, energy, and nanoparticle concentration are reduced to a system of nonlinear ordinary differential equations along with the transformed boundary conditions. The derived equations are solved with the help of the quasi-qinearization technique. The model is solved by considering the realistic values for the Lewis number, thermophoresis, and Brownian motion parameters. The objective of the current study is (i) to provide an efficient numerical technique for solving the boundary layer flow model and (ii) introduction of zero nanoparticle flux on the convectively heated stretching surface. The current study also focuses on the physical relevance and accurate trends of the boundary layer profiles, which are adequate in the laminar boundary layer theory. The dependence of the nanoparticle volume fraction and other pertinent parameters on the dimensionless velocity, temperature, shear stress, and heat transfer rates over the stretching surface are presented in the form of profiles.


2013 ◽  
Vol 24 (07) ◽  
pp. 1350044 ◽  
Author(s):  
MOHAMED ABD EL-AZIZ

The problem of a steady boundary layer MHD slip flow over a stretching sheet in a water-based nanofluid containing different type of nanoparticles: Cu , Al2O3 and Ag has been investigated. An external strong magnetic field is applied perpendicular to the plate and the Hall effect is taken into consideration. The surface of the stretching sheet is assumed to move with a linear velocity and subject to power-law variation of the surface temperature. The governing partial differential equations are transformed into nonlinear ordinary differential equations using a similarity transformation, before being solved numerically by a Runge–Kutta–Fehlberg method with shooting technique. Effects of the physical parameters on the primary velocity, the secondary velocity and the temperature as well as on the wall shear stress and the rate of heat transfer have been presented graphically and discussed in detail. Investigated results indicate that the nanoparticle volume fraction and the slip parameter produce opposite effects on the skin friction coefficients of the primary and secondary flow. Also, the nanoparticle volume fraction and the types of nanoparticles demonstrate a more pronounced influence on the secondary flow than that on the primary flow and temperature distribution.


2014 ◽  
Vol 6 ◽  
pp. 521236 ◽  
Author(s):  
Amin Noor ◽  
Roslinda Nazar ◽  
Khamisah Jafar ◽  
Ioan Pop

The steady boundary-layer flow of a nanofluid past a permeable moving flat plate in the presence of a coflowing fluid is theoretically investigated. The plate is assumed to move in the same or opposite direction of the free stream. The governing partial differential equations are first transformed into ordinary differential (similarity) equations before they are solved numerically using a finite-difference scheme along with a shooting method. Numerical results are obtained for the skin-friction coefficient, the local Nusselt number, and the local Sherwood number as well as the velocity, temperature, and nanoparticle volume fraction profiles for some values of the governing parameters, namely, the plate velocity parameter, the Prandtl number, the Lewis number, the Brownian motion parameter, the thermophoresis parameter, and the nanoparticle volume fraction parameter. The numerical results indicate that dual solutions exist when the plate and the free stream move in the opposite directions.


2015 ◽  
Vol 93 (12) ◽  
pp. 1615-1629 ◽  
Author(s):  
Zouhaier Mehrez ◽  
Afif El Cafsi ◽  
Ali Belghith ◽  
Patrick Le Quéré

This paper reports the numerical results of the mixed convection and entropy generation of Cu–water nanofluid flow in an open cavity heated from different sides with non-uniform temperature distribution. The finite volume method is used to solve the governing equations. The analysis is carried out by a range of Richardson numbers, 0.01 ≤ Ri ≤ 10, at a nanoparticle volume fraction of 0 ≤ [Formula: see text] ≤ 0.1, and Reynolds number Re = 200, with a cavity aspect ratio of L/H = 2. Three heating modes are considered: (A) the left wall is heated (inflow side, assisting flow); (B) the horizontal bottom wall is heated; and (C) the right wall is heated (outflow side, opposing flow). The results show that the heat transfer and the entropy generation increase with increasing Richardson number and nanoparticle volume fraction. The highest heat transfer and entropy generation are obtained with heating mode C (opposing flow). The contribution of heat transfer and fluid friction irreversibilities in the entropy generation depends on Richardson number and the heater position. The present investigation shows that the configuration with non-isothermal heater located at the bottom wall (B) has the highest performance in terms of heat transfer enhancement with minimum entropy generation.


Sign in / Sign up

Export Citation Format

Share Document