Service Level Agreement Conformance in Virtual Machine Migration with an Improved Energy and Performance Management Method

2020 ◽  
Vol 17 (9) ◽  
pp. 3904-3906
Author(s):  
Susmita J. A. Nair ◽  
T. R. Gopalakrishnan Nair

Increasing demand of computing resources and the popularity of cloud computing have led the organizations to establish of large-scale data centers. To handle varying workloads, allocating resources to Virtual Machines, placing the VMs in the most suitable physical machine at data centers without violating the Service Level Agreement remains a big challenge for the cloud providers. The energy consumption and performance degradation are the prime focus for the data centers in providing services by strictly following the SLA. In this paper we are suggesting a model for minimizing the energy consumption and performance degradation without violating SLA. The experiments conducted have shown a reduction in SLA violation by nearly 10%.

Author(s):  
Oshin Sharma ◽  
Hemraj Saini

Cloud computing has revolutionized the working models of IT industry and increasing the demand of cloud resources which further leads to increase in energy consumption of data centers. Virtual machines (VMs) are consolidated dynamically to reduce the number of host machines inside data centers by satisfying the customer's requirements and quality of services (QoS). Moreover, for using the services of cloud environment every cloud user has a service level agreement (SLA) that deals with energy and performance trade-offs. As, the excess of consolidation and migration may degrade the performance of system, therefore, this paper focuses the overall performance of the system instead of energy consumption during the consolidation process to maintain a trust level between cloud's users and providers. In addition, the paper proposed three different heuristics for virtual machine (VM) placement based on current and previous usage of resources. The proposed heuristics ensure a high level of service level agreements (SLA) and better performance of ESM metric in comparison to previous research.


Dynamic resource allocation of cloud data centers is implemented with the use of virtual machine migration. Selected virtual machines (VM) should be migrated on appropriate destination servers. This is a critical step and should be performed according to several criteria. It is proposed to use the criteria of minimum resource wastage and service level agreement violation. The optimization problem of the VM placement according to two criteria is formulated, which is equivalent to the well-known main assignment problem in terms of the structure, necessary conditions, and the nature of variables. It is suggested to use the Hungarian method or to reduce the problem to a closed transport problem. This allows the exact solution to be obtained in real time. Simulation has shown that the proposed approach outperforms widely used bin-packing heuristics in both criteria.


Author(s):  
Gurpreet Singh ◽  
Manish Mahajan ◽  
Rajni Mohana

BACKGROUND: Cloud computing is considered as an on-demand service resource with the applications towards data center on pay per user basis. For allocating the resources appropriately for the satisfaction of user needs, an effective and reliable resource allocation method is required. Because of the enhanced user demand, the allocation of resources has now considered as a complex and challenging task when a physical machine is overloaded, Virtual Machines share its load by utilizing the physical machine resources. Previous studies lack in energy consumption and time management while keeping the Virtual Machine at the different server in turned on state. AIM AND OBJECTIVE: The main aim of this research work is to propose an effective resource allocation scheme for allocating the Virtual Machine from an ad hoc sub server with Virtual Machines. EXECUTION MODEL: The execution of the research has been carried out into two sections, initially, the location of Virtual Machines and Physical Machine with the server has been taken place and subsequently, the cross-validation of allocation is addressed. For the sorting of Virtual Machines, Modified Best Fit Decreasing algorithm is used and Multi-Machine Job Scheduling is used while the placement process of jobs to an appropriate host. Artificial Neural Network as a classifier, has allocated jobs to the hosts. Measures, viz. Service Level Agreement violation and energy consumption are considered and fruitful results have been obtained with a 37.7 of reduction in energy consumption and 15% improvement in Service Level Agreement violation.


Author(s):  
Rashmi Rai ◽  
G. Sahoo

The ever-rising demand for computing services and the humongous amount of data generated everyday has led to the mushrooming of power craving data centers across the globe. These large-scale data centers consume huge amount of power and emit considerable amount of CO2.There have been significant work towards reducing energy consumption and carbon footprints using several heuristics for dynamic virtual machine consolidation problem. Here we have tried to solve this problem a bit differently by making use of utility functions, which are widely used in economic modeling for representing user preferences. Our approach also uses Meta heuristic genetic algorithm and the fitness is evaluated with the utility function to consolidate virtual machine migration within cloud environment. The initial results as compared with existing state of art shows marginal but significant improvement in energy consumption as well as overall SLA violations.


Author(s):  
Xiang Chen ◽  
Jun-rong Tang ◽  
Yong Zhang

In the cloud computing, the virtual machine (VM) dynamical management method needs to consider VM resource re-configuration caused by system computation resource status changing and load fluctuation. Based on migration objectives as QoS (Quality of Service), resource competition and energy consumption, the VM migration time, migration objective node selection and VM placement strategies are designed in this work. The Multi-Criteria Decision-Making (MCDM) method is also introduced for migration destination host selection. Experiment results show that the multi-objective optimization management method with TOPSIS can achieve lower service-level agreement (SLA) violation rate, less energy consumption and better balance among different objectives.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2724 ◽  
Author(s):  
Yuan ◽  
Sun

High-energy consumption in data centers has become a critical issue. The dynamic server consolidation has significant effects on saving energy of a data center. An effective way to consolidate virtual machines is to migrate virtual machines in real time so that some light load physical machines can be turned off or switched to low-power mode. The present challenge is to reduce the energy consumption of cloud data centers. In this paper, for the first time, a server consolidation algorithm based on the culture multiple-ant-colony algorithm was proposed for dynamic execution of virtual machine migration, thus reducing the energy consumption of cloud data centers. The server consolidation algorithm based on the culture multiple-ant-colony algorithm (CMACA) finds an approximate optimal solution through a specific target function. The simulation results show that the proposed algorithm not only reduces the energy consumption but also reduces the number of virtual machine migration.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoying Wang ◽  
Xiaojing Liu ◽  
Lihua Fan ◽  
Xuhan Jia

As cloud computing offers services to lots of users worldwide, pervasive applications from customers are hosted by large-scale data centers. Upon such platforms, virtualization technology is employed to multiplex the underlying physical resources. Since the incoming loads of different application vary significantly, it is important and critical to manage the placement and resource allocation schemes of the virtual machines (VMs) in order to guarantee the quality of services. In this paper, we propose a decentralized virtual machine migration approach inside the data centers for cloud computing environments. The system models and power models are defined and described first. Then, we present the key steps of the decentralized mechanism, including the establishment of load vectors, load information collection, VM selection, and destination determination. A two-threshold decentralized migration algorithm is implemented to further save the energy consumption as well as keeping the quality of services. By examining the effect of our approach by performance evaluation experiments, the thresholds and other factors are analyzed and discussed. The results illustrate that the proposed approach can efficiently balance the loads across different physical nodes and also can lead to less power consumption of the entire system holistically.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Rahul Yadav ◽  
Weizhe Zhang

Mobile cloud computing (MCC) provides various cloud computing services to mobile users. The rapid growth of MCC users requires large-scale MCC data centers to provide them with data processing and storage services. The growth of these data centers directly impacts electrical energy consumption, which affects businesses as well as the environment through carbon dioxide (CO2) emissions. Moreover, large amount of energy is wasted to maintain the servers running during low workload. To reduce the energy consumption of mobile cloud data centers, energy-aware host overload detection algorithm and virtual machines (VMs) selection algorithms for VM consolidation are required during detected host underload and overload. After allocating resources to all VMs, underloaded hosts are required to assume energy-saving mode in order to minimize power consumption. To address this issue, we proposed an adaptive heuristics energy-aware algorithm, which creates an upper CPU utilization threshold using recent CPU utilization history to detect overloaded hosts and dynamic VM selection algorithms to consolidate the VMs from overloaded or underloaded host. The goal is to minimize total energy consumption and maximize Quality of Service, including the reduction of service level agreement (SLA) violations. CloudSim simulator is used to validate the algorithm and simulations are conducted on real workload traces in 10 different days, as provided by PlanetLab.


2019 ◽  
Vol 8 (2) ◽  
pp. 3444-3449

Cloud computing, a metered based technology provides the services using virtualized technology over the internet. In the cloud environment, to improve the performance (such as utilization of the resources, energy minimization) extreme number of virtual machines (VMs) can be installed on the servers as per their resource capacity. In this way, servers can be overloaded. Overloaded servers consume more energythan normal status servers. VM migration (VMM) is an efficient technique to become a server in a normal state. VMM technique is used to consolidate the resources to increase resource utilization (RU) and reduceenergy usage. In the VMM technique, selection of VM such as which VM is migrated from one server to another server and allocation of VM on servers is an important aspect. Appropriate VM selection declines the numeral of VMMs and increasesenergy efficiency. Appropriate VM allocation declines the server to become overloaded. In this paper, the VM selection and allocation strategy is presented. CloudSim toolkit is used to verify the strength of proposed VM selection and allocation algorithm. Proposed VM Selection algorithm (MaMT) performs better than existing MiMT algorithm in terms of total energy consumption, number of hosts shut down, number of VMM, and average Service Level Agreement (SLA) violation rate. MaMT algorithm with resource aware provisioning (RAP) and MiMT+RAP algorithm combines both VM selection and allocation policies. RAP algorithm used both energy and RU parameters while allocating VM to the server.MaMTreduces the energy consumption up to 7.25% and reduces the SLA violation rate up-to 2.6% in comparison to MiMT algorithm. When VM selection and allocation policies combines together than more system performance is improved. MaMT+RAPreduces the energy consumption up to6.76% and reduces the SLA violation rate up-to 0.22% in comparison to MaMT algorithm.MiMT+RAPreduces the energy consumption up to15.23% and reduces the SLA violation rate up-to 0.95% in comparison to MiMT algorithm.


Author(s):  
Subrat Kumar Dhal ◽  
Harshit Verma ◽  
Sourav Kanti Addya

Cloud computing service has been on the rise over the past few decades, which has led to an increase in the number of data centers, thus consuming more amount of energy for their operation. Moreover, the energy consumption in the cloud is proportional to the resource utilization. Thus consolidation schemes for the cloud model need to be devised to minimize energy by decreasing the operating costs. The consolidation problem is NP-complete, which requires heuristic techniques to get a sub-optimal solution. The authors have proposed a new consolidation scheme for the virtual machines (VMs) by improving the host overload detection phase. The resulting scheme is effective in reducing the energy and the level of Service Level Agreement (SLA) violations both, to a considerable extent. For testing the performance of implementation, a simulation environment is needed that can provide an environment of the actual cloud computing components. The authors have used CloudSim 3.0.3 simulation toolkit that allows testing and analyzing Allocation and Selection algorithms.


Sign in / Sign up

Export Citation Format

Share Document