Automated Recognition of Arrhythmia Using Deep Neural Networks for 12-Lead Electrocardiograms with Fractional Time–Frequency Domain Extension

2020 ◽  
Vol 10 (11) ◽  
pp. 2764-2767
Author(s):  
Chuanbin Ge ◽  
Di Liu ◽  
Juan Liu ◽  
Bingshuai Liu ◽  
Yi Xin

Arrhythmia is a group of conditions in which the heartbeat is irregular. There are many types of arrhythmia. Some can be life-threatening. Electrocardiogram (ECG) is an effective clinical tool used to diagnosis arrhythmia. Automatic recognition of different arrhythmia types in ECG signals has become an important and challenging issue. In this article, we proposed an algorithm to detect arrhythmia in 12-lead ECG signals and classify signals into 9 categories. Two 19-layer deep neural networks combining convolutional neural network and gated recurrent unit were proposed to realize this work. The first one was trained directly with the raw 12-lead ECG data while the other one was trained with an 18-"lead" ECG data, where the six extra leads containing morphology information in fractional time–frequency domain were generated utilizing fractional Fourier transform (FRFT). Overall detection results were obtained by fusing the output of these two networks and the final classification results on the testing dataset reports our proposed algorithm obtained a F1 score of 0.855. Furthermore, with our proposed algorithm, a better F1 score 0.81 was attained using training dataset provided by the China Physiological Signal Challenge held in 2018.

2004 ◽  
Vol 213 ◽  
pp. 483-486
Author(s):  
David Brodrick ◽  
Douglas Taylor ◽  
Joachim Diederich

A recurrent neural network was trained to detect the time-frequency domain signature of narrowband radio signals against a background of astronomical noise. The objective was to investigate the use of recurrent networks for signal detection in the Search for Extra-Terrestrial Intelligence, though the problem is closely analogous to the detection of some classes of Radio Frequency Interference in radio astronomy.


2020 ◽  
Vol 10 (6) ◽  
pp. 2104
Author(s):  
Michał Tomaszewski ◽  
Paweł Michalski ◽  
Jakub Osuchowski

This article presents an analysis of the effectiveness of object detection in digital images with the application of a limited quantity of input. The possibility of using a limited set of learning data was achieved by developing a detailed scenario of the task, which strictly defined the conditions of detector operation in the considered case of a convolutional neural network. The described solution utilizes known architectures of deep neural networks in the process of learning and object detection. The article presents comparisons of results from detecting the most popular deep neural networks while maintaining a limited training set composed of a specific number of selected images from diagnostic video. The analyzed input material was recorded during an inspection flight conducted along high-voltage lines. The object detector was built for a power insulator. The main contribution of the presented papier is the evidence that a limited training set (in our case, just 60 training frames) could be used for object detection, assuming an outdoor scenario with low variability of environmental conditions. The decision of which network will generate the best result for such a limited training set is not a trivial task. Conducted research suggests that the deep neural networks will achieve different levels of effectiveness depending on the amount of training data. The most beneficial results were obtained for two convolutional neural networks: the faster region-convolutional neural network (faster R-CNN) and the region-based fully convolutional network (R-FCN). Faster R-CNN reached the highest AP (average precision) at a level of 0.8 for 60 frames. The R-FCN model gained a worse AP result; however, it can be noted that the relationship between the number of input samples and the obtained results has a significantly lower influence than in the case of other CNN models, which, in the authors’ assessment, is a desired feature in the case of a limited training set.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Zhang ◽  
Chengyu Liu ◽  
Zhimin Zhang ◽  
Yujie Xing ◽  
Xinwen Liu ◽  
...  

The present study addresses the cardiac arrhythmia (CA) classification problem using the deep learning (DL)-based method for electrocardiography (ECG) data analysis. Recently, various DL techniques have been utilized to classify arrhythmias, with one typical approach to developing a one-dimensional (1D) convolutional neural network (CNN) model to handle the ECG signals in the time domain. Although the CA classification in the time domain is very prevalent, current methods’ performances are still not robust or satisfactory. This study aims to develop a solution for CA classification in two dimensions by introducing the recurrence plot (RP) combined with an Inception-ResNet-v2 network. The proposed method for nine types of CA classification was tested on the 1st China Physiological Signal Challenge 2018 dataset. During implementation, the optimal leads (lead II and lead aVR) were selected, and then 1D ECG segments were transformed into 2D texture images by the RP approach. These RP-based images as input signals were passed into the Inception-ResNet-v2 for CA classification. In the CPSC, Georgia, and the PTB_XL ECG databases of the PhysioNet/Computing in Cardiology Challenge 2020, the RP-based method achieved an average F1-score of 0.8521, 0.8529, and 0.8862, respectively. The results suggested the excellent generalization ability of the proposed method. To further assess the performance of the proposed method, we compared the 2D RP-image-based solution with the published 1D ECG-based works on the same dataset. Also, it was compared with two traditional ECG transform into 2D image methods, including the time waveform of the ECG recordings and time-frequency images based on continuous wavelet transform (CWT). The proposed method achieved the highest average F1-score of 0.844, with only two leads of the 12-lead ECG original data, which outperformed other works. Therefore, the promising results indicate that the 2D RP-based method has a high clinical potential for CA classification using fewer lead ECG signals.


2021 ◽  
Vol 37 (2) ◽  
pp. 123-143
Author(s):  
Tuan Minh Luu ◽  
Huong Thanh Le ◽  
Tan Minh Hoang

Deep neural networks have been applied successfully to extractive text summarization tasks with the accompany of large training datasets. However, when the training dataset is not large enough, these models reveal certain limitations that affect the quality of the system’s summary. In this paper, we propose an extractive summarization system basing on a Convolutional Neural Network and a Fully Connected network for sentence selection. The pretrained BERT multilingual model is used to generate embeddings vectors from the input text. These vectors are combined with TF-IDF values to produce the input of the text summarization system. Redundant sentences from the output summary are eliminated by the Maximal Marginal Relevance method. Our system is evaluated with both English and Vietnamese languages using CNN and Baomoi datasets, respectively. Experimental results show that our system achieves better results comparing to existing works using the same dataset. It confirms that our approach can be effectively applied to summarize both English and Vietnamese languages.


Biosensors ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 188
Author(s):  
Li-Ren Yeh ◽  
Wei-Chin Chen ◽  
Hua-Yan Chan ◽  
Nan-Han Lu ◽  
Chi-Yuan Wang ◽  
...  

Anesthesia assessment is most important during surgery. Anesthesiologists use electrocardiogram (ECG) signals to assess the patient’s condition and give appropriate medications. However, it is not easy to interpret the ECG signals. Even physicians with more than 10 years of clinical experience may still misjudge. Therefore, this study uses convolutional neural networks to classify ECG image types to assist in anesthesia assessment. The research uses Internet of Things (IoT) technology to develop ECG signal measurement prototypes. At the same time, it classifies signal types through deep neural networks, divided into QRS widening, sinus rhythm, ST depression, and ST elevation. Three models, ResNet, AlexNet, and SqueezeNet, are developed with 50% of the training set and test set. Finally, the accuracy and kappa statistics of ResNet, AlexNet, and SqueezeNet in ECG waveform classification were (0.97, 0.96), (0.96, 0.95), and (0.75, 0.67), respectively. This research shows that it is feasible to measure ECG in real time through IoT and then distinguish four types through deep neural network models. In the future, more types of ECG images will be added, which can improve the real-time classification practicality of the deep model.


2021 ◽  
Vol 13 (15) ◽  
pp. 2908
Author(s):  
Do-Hyung Kim ◽  
Guzmán López ◽  
Diego Kiedanski ◽  
Iyke Maduako ◽  
Braulio Ríos ◽  
...  

Understanding the biases in Deep Neural Networks (DNN) based algorithms is gaining paramount importance due to its increased applications on many real-world problems. A known problem of DNN penalizing the underrepresented population could undermine the efficacy of development projects dependent on data produced using DNN-based models. In spite of this, the problems of biases in DNN for Land Use and Land Cover Classification (LULCC) have not been a subject of many studies. In this study, we explore ways to quantify biases in DNN for land use with an example of identifying school buildings in Colombia from satellite imagery. We implement a DNN-based model by fine-tuning an existing, pre-trained model for school building identification. The model achieved overall 84% accuracy. Then, we used socioeconomic covariates to analyze possible biases in the learned representation. The retrained deep neural network was used to extract visual features (embeddings) from satellite image tiles. The embeddings were clustered into four subtypes of schools, and the accuracy of the neural network model was assessed for each cluster. The distributions of various socioeconomic covariates by clusters were analyzed to identify the links between the model accuracy and the aforementioned covariates. Our results indicate that the model accuracy is lowest (57%) where the characteristics of the landscape are predominantly related to poverty and remoteness, which confirms our original assumption on the heterogeneous performances of Artificial Intelligence (AI) algorithms and their biases. Based on our findings, we identify possible sources of bias and present suggestions on how to prepare a balanced training dataset that would result in less biased AI algorithms. The framework used in our study to better understand biases in DNN models would be useful when Machine Learning (ML) techniques are adopted in lieu of ground-based data collection for international development programs. Because such programs aim to solve issues of social inequality, MLs are only applicable when they are transparent and accountable.


Sign in / Sign up

Export Citation Format

Share Document