scholarly journals Recurrence Plot-Based Approach for Cardiac Arrhythmia Classification Using Inception-ResNet-v2

2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Zhang ◽  
Chengyu Liu ◽  
Zhimin Zhang ◽  
Yujie Xing ◽  
Xinwen Liu ◽  
...  

The present study addresses the cardiac arrhythmia (CA) classification problem using the deep learning (DL)-based method for electrocardiography (ECG) data analysis. Recently, various DL techniques have been utilized to classify arrhythmias, with one typical approach to developing a one-dimensional (1D) convolutional neural network (CNN) model to handle the ECG signals in the time domain. Although the CA classification in the time domain is very prevalent, current methods’ performances are still not robust or satisfactory. This study aims to develop a solution for CA classification in two dimensions by introducing the recurrence plot (RP) combined with an Inception-ResNet-v2 network. The proposed method for nine types of CA classification was tested on the 1st China Physiological Signal Challenge 2018 dataset. During implementation, the optimal leads (lead II and lead aVR) were selected, and then 1D ECG segments were transformed into 2D texture images by the RP approach. These RP-based images as input signals were passed into the Inception-ResNet-v2 for CA classification. In the CPSC, Georgia, and the PTB_XL ECG databases of the PhysioNet/Computing in Cardiology Challenge 2020, the RP-based method achieved an average F1-score of 0.8521, 0.8529, and 0.8862, respectively. The results suggested the excellent generalization ability of the proposed method. To further assess the performance of the proposed method, we compared the 2D RP-image-based solution with the published 1D ECG-based works on the same dataset. Also, it was compared with two traditional ECG transform into 2D image methods, including the time waveform of the ECG recordings and time-frequency images based on continuous wavelet transform (CWT). The proposed method achieved the highest average F1-score of 0.844, with only two leads of the 12-lead ECG original data, which outperformed other works. Therefore, the promising results indicate that the 2D RP-based method has a high clinical potential for CA classification using fewer lead ECG signals.

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Wei Xiong ◽  
Qingbo He ◽  
Zhike Peng

Wayside acoustic defective bearing detector (ADBD) system is a potential technique in ensuring the safety of traveling vehicles. However, Doppler distortion and multiple moving sources aliasing in the acquired acoustic signals decrease the accuracy of defective bearing fault diagnosis. Currently, the method of constructing time-frequency (TF) masks for source separation was limited by an empirical threshold setting. To overcome this limitation, this study proposed a dynamic Doppler multisource separation model and constructed a time domain-separating matrix (TDSM) to realize multiple moving sources separation in the time domain. The TDSM was designed with two steps of (1) constructing separating curves and time domain remapping matrix (TDRM) and (2) remapping each element of separating curves to its corresponding time according to the TDRM. Both TDSM and TDRM were driven by geometrical and motion parameters, which would be estimated by Doppler feature matching pursuit (DFMP) algorithm. After gaining the source components from the observed signals, correlation operation was carried out to estimate source signals. Moreover, fault diagnosis could be carried out by envelope spectrum analysis. Compared with the method of constructing TF masks, the proposed strategy could avoid setting thresholds empirically. Finally, the effectiveness of the proposed technique was validated by simulation and experimental cases. Results indicated the potential of this method for improving the performance of the ADBD system.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881346 ◽  
Author(s):  
Tabi Fouda Bernard Marie ◽  
Dezhi Han ◽  
Bowen An ◽  
Jingyun Li

To detect and recognize any type of events over the perimeter security system, this article proposes a fiber-optic vibration pattern recognition method based on the combination of time-domain features and time-frequency domain features. The performance parameters (event recognition, event location, and event classification) are very important and describe the validity of this article. The pattern recognition method is precisely based on the empirical mode decomposition of time-frequency entropy and center-of-gravity frequency. It implements the function of identifying and classifying the event (intrusions or non-intrusion) over the perimeter to secure. To achieve this method, the first-level prejudgment is performed according to the time-domain features of the vibration signal, and the second-level prediction is carried out through time-frequency analysis. The time-frequency distribution of the signal is obtained by empirical mode decomposition and Hilbert transform and then the time-frequency entropy and center-of-gravity frequency are used to form the time-frequency domain features, that is, combined with the time-domain features to form feature vectors. Multiple types of probabilistic neural networks are identified to determine whether there are intrusions and the intrusion types. The experimental results demonstrate that the proposed method is effective and reliable in identifying and classifying the type of event.


2021 ◽  
Author(s):  
Tharaj Thaj ◽  
Emanuele Viterbo

This paper proposes <i>orthogonal time sequency multiplexing</i> (OTSM), a novel single carrier modulation scheme based on the well known Walsh-Hadamard transform (WHT) combined with row-column interleaving, and zero padding (ZP) between blocks in the time-domain. The information symbols in OTSM are multiplexed in the delay and sequency domain using a cascade of time-division and Walsh-Hadamard (sequency) multiplexing. By using the WHT for transmission and reception, the modulation and demodulation steps do not require any complex multiplications. We then propose two low-complexity detectors: (i) a simpler non-iterative detector based on a single tap minimum mean square time-frequency domain equalizer and (ii) an iterative time-domain detector. We demonstrate, via numerical simulations, that the proposed modulation scheme offers high performance gains over orthogonal frequency division multiplexing (OFDM) and exhibits the same performance of orthogonal time frequency space (OTFS) modulation, but with lower complexity. In proposing OTSM, along with simple detection schemes, we offer the lowest complexity solution to achieving reliable communication in high mobility wireless channels, as compared to the available schemes published so far in the literature.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3985 ◽  
Author(s):  
Siyu Chen ◽  
Yanzhang Wang ◽  
Jun Lin

Residence time difference (RTD) fluxgate sensor is a potential device to measure the DC or low-frequency magnetic field in the time domain. Nevertheless, jitter noise and magnetic noise severely affect the detection result. A novel post-processing algorithm for jitter noise reduction of RTD fluxgate output strategy based on the single-frequency time difference (SFTD) method is proposed in this study to boost the performance of the RTD system. This algorithm extracts the signal that has a fixed frequency and preserves its time-domain information via a time–frequency transformation method. Thereby, the single-frequency signal without jitter noise, which still contains the ambient field information in its time difference, is yielded. Consequently, compared with the traditional comparator RTD method (CRTD), the stability of the RTD estimation (in other words, the signal-to-noise ratio of residence time difference) has been significantly boosted with sensitivity of 4.3 μs/nT. Furthermore, the experimental results reveal that the RTD fluxgate is comparable to harmonic fluxgate sensors, in terms of noise floor.


2011 ◽  
Vol 667 ◽  
pp. 544-554 ◽  
Author(s):  
COLM J. FITZGERALD ◽  
MICHAEL H. MEYLAN

We consider the time domain problem of a floating body in two dimensions, constrained to move in heave and pitch only, subject to the linear equations of water waves. We show that using the acceleration potential, we can write the equations of motion as an abstract wave equation. From this we derive a generalized eigenfunction solution in which the time domain problem is solved using the frequency-domain solutions. We present numerical results for two simple cases and compare our results with an alternative time domain method.


2018 ◽  
Vol 28 ◽  
pp. 01010 ◽  
Author(s):  
Piotr Oskar Czechowski ◽  
Tomasz Owczarek ◽  
Artur Badyda ◽  
Grzegorz Majewski ◽  
Mariusz Rogulski ◽  
...  

The paper presents selected preliminary stage key issues proposed extended equivalence measurement results assessment for new portable devices - the comparability PM10 concentration results hourly series with reference station measurement results with statistical methods. In article presented new portable meters technical aspects. The emphasis was placed on the comparability the results using the stochastic and exploratory methods methodology concept. The concept is based on notice that results series simple comparability in the time domain is insufficient. The comparison of regularity should be done in three complementary fields of statistical modeling: time, frequency and space. The proposal is based on model’s results of five annual series measurement results new mobile devices and WIOS (Provincial Environmental Protection Inspectorate) reference station located in Nowy Sacz city. The obtained results indicate both the comparison methodology completeness and the high correspondence obtained new measurements results devices with reference.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. Q27-Q36 ◽  
Author(s):  
Lele Zhang ◽  
Jan Thorbecke ◽  
Kees Wapenaar ◽  
Evert Slob

We have developed a scheme that retrieves primary reflections in the two-way traveltime domain by filtering the data. The data have their own filter that removes internal multiple reflections, whereas the amplitudes of the retrieved primary reflections are compensated for two-way transmission losses. Application of the filter does not require any model information. It consists of convolutions and correlations of the data with itself. A truncation in the time domain is applied after each convolution or correlation. The retrieved data set can be used as the input to construct a better velocity model than the one that would be obtained by working directly with the original data and to construct an enhanced subsurface image. Two 2D numerical examples indicate the effectiveness of the method. We have studied bandwidth limitations by analyzing the effects of a thin layer. The presence of refracted and scattered waves is a known limitation of the method, and we studied it as well. Our analysis indicates that a thin layer is treated as a more complicated reflector, and internal multiple reflections related to the thin layer are properly removed. We found that the presence of refracted and scattered waves generates artifacts in the retrieved data.


2020 ◽  
Vol 10 (11) ◽  
pp. 2764-2767
Author(s):  
Chuanbin Ge ◽  
Di Liu ◽  
Juan Liu ◽  
Bingshuai Liu ◽  
Yi Xin

Arrhythmia is a group of conditions in which the heartbeat is irregular. There are many types of arrhythmia. Some can be life-threatening. Electrocardiogram (ECG) is an effective clinical tool used to diagnosis arrhythmia. Automatic recognition of different arrhythmia types in ECG signals has become an important and challenging issue. In this article, we proposed an algorithm to detect arrhythmia in 12-lead ECG signals and classify signals into 9 categories. Two 19-layer deep neural networks combining convolutional neural network and gated recurrent unit were proposed to realize this work. The first one was trained directly with the raw 12-lead ECG data while the other one was trained with an 18-"lead" ECG data, where the six extra leads containing morphology information in fractional time–frequency domain were generated utilizing fractional Fourier transform (FRFT). Overall detection results were obtained by fusing the output of these two networks and the final classification results on the testing dataset reports our proposed algorithm obtained a F1 score of 0.855. Furthermore, with our proposed algorithm, a better F1 score 0.81 was attained using training dataset provided by the China Physiological Signal Challenge held in 2018.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Jhonatan Camacho-Navarro ◽  
R. Guzmán-López ◽  
Sergio Gómez ◽  
Marco Flórez

The procedures used to estimate structural modal parameters as natural frequency, damping ratios, and mode shapes are generally based on frequency methods. However, methods of time-frequency analysis are highly sensible to the parameters used to calculate the discrete Fourier transform: windowing, resolution, and preprocessing. Thus, the uncertainty of the modal parameters is increased if a proper parameter selection is not considered. In this work, the influence of three different time domain windows functions (Hanning, flat-top, and rectangular) used to estimate modal parameters are discussed in the framework of ISO 18431 standard. Experimental results are conducted over an AISI 1020 steel plate, which is excited by means of a hammer element. Vibration response is acquired by using acceleration records according to the ISO 7626-5 reference guides. The results are compared with a theoretical method and it is obtained that the flat-top window is the best function for experimental modal analysis.


2017 ◽  
Vol 42 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Henryk Majchrzak ◽  
Andrzej Cichoń ◽  
Sebastian Borucki

Abstract This paper provides an example of the application of the acoustic emission (AE) method for the diagnosis of technical conditions of a three-phase on-load tap-changer (OLTC) GIII type. The measurements were performed for an amount of 10 items of OLTCs, installed in power transformers with a capacity of 250 MVA. The study was conducted in two different OLTC operating conditions during the tapping process: under load and free running conditions. The analysis of the measurement results was made in both time domain and time-frequency domain. The description of the AE signals generated by the OLTC in the time domain was performed using the analysis of waveforms and determined characteristic times. Within the time-frequency domain the measured signals were described by short-time Fourier transform spectrograms.


Sign in / Sign up

Export Citation Format

Share Document