Nested U-Net Architecture Based Image Segmentation for 3D Neuron Reconstruction

2021 ◽  
Vol 11 (5) ◽  
pp. 1348-1356
Author(s):  
Jian Yang ◽  
Yong Zhang ◽  
Yuanlin Yu ◽  
Ning Zhong

Digital reconstruction of neurons is a critical step in studying neuronal morphology and exploring the working mechanism of the brain. In recent years, the focus of neuronal morphology reconstruction has gradually shifted from single neurons to multiple neurons in a whole brain. Microscopic images of a whole brain often have low signal-to-noise-ratio, discontinuous neuron fragments or weak neuron signals. It is very difficult to segment neuronal signals from the background of these images, which is the first step of most automatic reconstruction algorithms. In this study, we propose a Nested U-Net based Ultra-Tracer model (NUNU-Tracer) for better multiple neurons image segmentation and morphology reconstruction. The NUNU-Tracer utilizes nested U-Net (UNet++) deep network to segment 3D neuron images, reconstructs neuron morphologies under the framework of the Ultra-Tracer and prunes branches of noncurrent tracing neurons. The 3D UNet++ takes a 3D microscopic image as its input, and uses scale-space distance transform and linear fusion strategy to generate the segmentation maps for voxels in the image. It is capable of removing noise, repairing broken neurite patterns and enhancing neuronal signals. We evaluate the performance of the 3D UNet++ for image segmentation and NUNU-Tracer for neuron morphology reconstruction on image blocks and neurons, respectively. Experimental results show that they significantly improve the accuracy and length of neuron reconstructions.

2019 ◽  
Author(s):  
Yimin Wang ◽  
Qi Li ◽  
Lijuan Liu ◽  
Zhi Zhou ◽  
Yun Wang ◽  
...  

AbstractNeuron morphology is recognized as a key determinant of cell type, yet the quantitative profiling of a mammalian neuron’s complete three-dimensional (3-D) morphology remains arduous when the neuron has complex arborization and long projection. Whole-brain reconstruction of neuron morphology is even more challenging as it involves processing tens of teravoxels of imaging data. Validating such reconstructions is extremely laborious. We developed TeraVR, an open-source virtual reality annotation system, to address these challenges. TeraVR integrates immersive and collaborative 3-D visualization, interaction, and hierarchical streaming of teravoxel-scale images. Using TeraVR, we produced precise 3-D full morphology of long-projecting neurons in whole mouse brains and developed a collaborative workflow for highly accurate neuronal reconstruction.


2018 ◽  
Vol 218 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Nathaniel Noblett ◽  
Zilu Wu ◽  
Zhao Hua Ding ◽  
Seungmee Park ◽  
Tony Roenspies ◽  
...  

Neuronal morphology and circuitry established during early development must often be maintained over the entirety of animal lifespans. Compared with neuronal development, the mechanisms that maintain mature neuronal structures and architecture are little understood. The conserved disco-interacting protein 2 (DIP2) consists of a DMAP1-binding domain and two adenylate-forming domains (AFDs). We show that the Caenorhabditis elegans DIP-2 maintains morphology of mature neurons. dip-2 loss-of-function mutants display a progressive increase in ectopic neurite sprouting and branching during late larval and adult life. In adults, dip-2 also inhibits initial stages of axon regeneration cell autonomously and acts in parallel to DLK-1 MAP kinase and EFA-6 pathways. The function of DIP-2 in maintenance of neuron morphology and in axon regrowth requires its AFD domains and is independent of its DMAP1-binding domain. Our findings reveal a new conserved regulator of neuronal morphology maintenance and axon regrowth after injury.


2017 ◽  
Vol 8 (4) ◽  
pp. 58-83 ◽  
Author(s):  
Abdul Kayom Md Khairuzzaman ◽  
Saurabh Chaudhury

Multilevel thresholding is a popular image segmentation technique. However, computational complexity of multilevel thresholding increases very rapidly with increasing number of thresholds. Metaheuristic algorithms are applied to reduce computational complexity of multilevel thresholding. A new method of multilevel thresholding based on Moth-Flame Optimization (MFO) algorithm is proposed in this paper. The goodness of the thresholds is evaluated using Kapur's entropy or Otsu's between class variance function. The proposed method is tested on a set of benchmark test images and the performance is compared with PSO (Particle Swarm Optimization) and BFO (Bacterial Foraging Optimization) based methods. The results are analyzed objectively using the fitness function and the Peak Signal to Noise Ratio (PSNR) values. It is found that MFO based multilevel thresholding method performs better than the PSO and BFO based methods.


2018 ◽  
pp. 771-797
Author(s):  
Abdul Kayom Md Khairuzzaman ◽  
Saurabh Chaudhury

Multilevel thresholding is a popular image segmentation technique. However, computational complexity of multilevel thresholding increases very rapidly with increasing number of thresholds. Metaheuristic algorithms are applied to reduce computational complexity of multilevel thresholding. A new method of multilevel thresholding based on Moth-Flame Optimization (MFO) algorithm is proposed in this paper. The goodness of the thresholds is evaluated using Kapur's entropy or Otsu's between class variance function. The proposed method is tested on a set of benchmark test images and the performance is compared with PSO (Particle Swarm Optimization) and BFO (Bacterial Foraging Optimization) based methods. The results are analyzed objectively using the fitness function and the Peak Signal to Noise Ratio (PSNR) values. It is found that MFO based multilevel thresholding method performs better than the PSO and BFO based methods.


2020 ◽  
Vol 11 (2) ◽  
pp. 31-61
Author(s):  
Falguni Chakraborty ◽  
Provas Kumar Roy ◽  
Debashis Nandi

Determination of optimum thresholds is the prime concern of any multilevel image thresholding technique. The traditional methods for multilevel thresholding are computationally expensive, time-consuming, and also suffer from lack of accuracy and stability. To address this issue, the authors propose a new methodology for multilevel image thresholding based on a recently developed meta-heuristic algorithm, Symbiotic Organisms Search (SOS). The SOS algorithm has been inspired by the symbiotic relationship among the organism in nature. This article has utilized the concept of the symbiotic relationship among the organisms to optimize three objective functions: Otsu's between class variance and Kapur's and Tsallis entropy for image segmentation. The performance of the SOS based image segmentation algorithm has been evaluated using a set of benchmark images and has been compared with four recent meta-heuristic algorithms. The algorithms are compared in terms of effectiveness and consistency. The quality of the algorithms has been estimated by some well-defined quality metrics such as peak signal-to-noise ratio (PSNR), structure similarity index (SSIM), and, feature similarity index (FSIM). The experimental results of the algorithms reveal that the balance of intensification and diversification of the SOS algorithm to achieve the global optima is better than others.


2020 ◽  
Vol 11 (4) ◽  
pp. 64-90
Author(s):  
Falguni Chakraborty ◽  
Provas Kumar Roy ◽  
Debashis Nandi

Multilevel thresholding plays a significant role in the arena of image segmentation. The main issue of multilevel image thresholding is to select the optimal combination of threshold value at different level. However, this problem has become challenging with the higher number of levels, because computational complexity is increased exponentially as the increase of number of threshold. To address this problem, this paper has proposed elephant herding optimization (EHO) based multilevel image thresholding technique for image segmentation. The EHO method has been inspired by the herding behaviour of elephant group in nature. Two well-known objective functions such as ‘Kapur's entropy' and ‘between-class variance method' have been used to determine the optimized threshold values for segmentation of different objects from an image. The performance of the proposed algorithm has been verified using a set of different test images taken from a well-known benchmark dataset named Berkeley Segmentation Dataset (BSDS). For comparative analysis, the results have been compared with three popular algorithms, e.g. cuckoo search (CS), artificial bee colony (ABC) and particle swarm optimization (PSO). It has been observed that the performance of the proposed EHO based image segmentation technique is efficient and promising with respect to the others in terms of the values of optimized thresholds, objective functions, peak signal-to-noise ratio (PSNR), structure similarity index (SSIM) and feature similarity index (FSIM). The algorithm also shows better convergence profile than the other methods discussed.


2020 ◽  
Vol 12 (5) ◽  
pp. 822
Author(s):  
Lihua Zhong ◽  
Xiaolan Qiu ◽  
Bing Han ◽  
Yuxin Hu

Due to the specific working mechanism of alternately transmitting and receiving signals between multiple adjacent swaths, scanning synthetic aperture radar (ScanSAR) will cause periodical wavelike modulation of the intensity image along azimuth direction, which is known as scalloping. Conventional descalloping methods are achieved by proper azimuth antenna pattern (AAP) correction and multi-looking techniques but are limited by the accuracy of Doppler centroid estimating and the thermal noise. Another type of method extracts and suppresses the scalloping texture on the image, but the scanning parameters of ScanSAR are insufficiently considered. The period of scalloping on the image is related to the period of switching between subswathes. While the harmonics can be calculated by the period of a periodic signal, an improved frequency filtering method combined with imaging parameters is proposed. The scalloping modulation model of ScanSAR combined with imaging parameters is constructed, and the harmonics of scalloping texture are accurately calculated and filtered. For the low signal to noise ratio (SNR) image, the antenna pattern is modified according to SNR to avoid scalloping caused by noise. For non-uniform scenes, scalloping suppression is achieved by using the scalloping features acquired by uniform scenes. To separate the non-uniform scenes from uniform scenes, we still use the characteristics of harmonics caused by scalloping. Our descalloping method achieves accurate suppression of scalloping without sea-land segmentation and ship mask and the residual scalloping is reduced from 1.0 to 0.3–0.5 dB. The residual scalloping and statistical characteristics of the image are analyzed to demonstrate the effectiveness of the proposed method.


2007 ◽  
Author(s):  
Laura Mascio Kegelmeyer ◽  
Philip W. Fong ◽  
Steven M. Glenn ◽  
Judith A. Liebman

Sign in / Sign up

Export Citation Format

Share Document