Cellulose Nanocrystal-Filled Carboxymethyl Cellulose Nanocomposites

2006 ◽  
Vol 6 (3) ◽  
pp. 633-639 ◽  
Author(s):  
YongJae Choi ◽  
John Simonsen

Polymer nanocomposites are one of the important application areas for nanotechnology. Naturally derived organic nanophase materials are of special interest in the case of polymer nanocomposites. Carboxymethyl cellulose is a polyelectrolyte derived from natural materials. It has been extensively studied as a hydrogel polymer. Methods to modify the mechanical properties of gels and films made from CMC are of interest in our lab and in the commercial marketplace. The effect of nano-sized fillers on the properties of CMC-based composites is of interest in the development of novel or improved applications for hydrogel polymers in general and CMC in particular. This project investigated cellulose nanocrystals (CNXLs) as a filler in CMC and compared the effects to microcrystalline cellulose (MCC). The composite material was composed of CMC, MCC or CNXL, with glycerin as a plasticizer. CNXL and MCC concentrations ranged from 5% to 30%. Glycerin concentrations were kept constant at 10%. CNXLs improved the strength and stiffness of the resulting composite compared to MCC. In addition, a simple heat treatment was found to render the nanocomposite water resistant.

2020 ◽  
Vol 16 (2) ◽  
pp. 145-153
Author(s):  
Fathin Najihah Nor Mohd Hussin ◽  
Roswanira Abdul Wahab ◽  
Nursyafreena Attan

The advancement of nanotechnology has opened a new opportunity to develop nanocomposites using nanocellulose (NC) and nanoclay (NCl). Researchers have regarded these nanocomposites as promising substitutes for conventional polymers because of their characteristic and useful features, which include exceptional strength and stiffness, low weight, and low environmental impact. These features of NC and NCl explain their multifarious applications across many sectors. Here we review NC and NCl as well as various reinforced polymer composites that are made up of either of the two nanomaterials. The structural and physicochemical properties of NC and NCl are highlighted, along with the mechanical behavior and thermal properties of NC. Current nanomaterial hybrid biopolymers for the production of novel high-performance polymer nanocomposites are also discussed with respect to their mechanical properties.


Author(s):  
M. A. McCoy

Transformation toughening by ZrO2 inclusions in various ceramic matrices has led to improved mechanical properties in these materials. Although the processing of these materials usually involves standard ceramic powder processing techniques, an alternate method of producing ZrO2 particles involves the devtrification of a ZrO2-containing glass. In this study the effects of glass composition (ZrO2 concentration) and heat treatment on the morphology of the crystallization products in a MgO•Al2•SiO2•ZrO2 glass was investigated.


2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


2019 ◽  
Vol 74 (6) ◽  
pp. 366-379 ◽  
Author(s):  
V. Jászfi ◽  
P. Prevedel ◽  
A. Eggbauer ◽  
Y. Godai ◽  
P. Raninger ◽  
...  

Alloy Digest ◽  
1953 ◽  
Vol 2 (10) ◽  

Abstract CONDULOY is a low beryllium-copper alloy containing about 1.5% nickel. It responds to age-hardening heat treatment for improved mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Cu-11. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
1985 ◽  
Vol 34 (5) ◽  

Abstract ALUMINUM 319.0 is a general-purpose foundry alloy that is moderately responsive to heat treatment. It has excellent casting characteristics and good mechanical properties. Among its many uses are crankcases, housings, engine parts, typewriter frames and rear-axle housings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as creep and fatigue. It also includes information on low and high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Al-256. Producer or source: Various aluminum companies.


Sign in / Sign up

Export Citation Format

Share Document