Hydrogen Storage in Carbon Nanotubes: A Multi-Scale Theoretical Study

2006 ◽  
Vol 6 (1) ◽  
pp. 87-90 ◽  
Author(s):  
Giannis Mpourmpakis ◽  
Emmanuel Tylianakis ◽  
George Froudakis

A Combination of quantum and classical calculations has been performed to investigate the hydrogen storage in single-walled carbon nanotubes (SWNTs). The ab-initio calculations at the Density Functional level of Theory (DFT) show the nature of hydrogen interaction in selected sites of a (5,5) tube walls. On top of this, Molecular Dynamics simulations model large scale nanotube systems and reproduce the storage capacity under variant temperature conditions. Our results indicate that the interaction of hydrogen with SWNTs is very weak and slightly increase of temperature, causes hydrogen diffusion from the tube walls.

Author(s):  
Giulia Mancardi ◽  
Matteo Alberghini ◽  
Neus Aguilera-Porta ◽  
Monica Calatayud ◽  
Pietro Asinari ◽  
...  

Titanium dioxide nanoparticles have risen concerns about their possible toxicity and the European Food Safety Authority recently banned the use of TiO2 nano-additive in food products. Following the intent of relating nanomaterials atomic structure with their toxicity without having to conduct large scale experiments on living organisms, we investigate the aggregation of titanium dioxide nanoparticles using a multi-scale technique: starting from ab initio Density Functional Theory to get an accurate determination of the energetics and electronic structure, we switch to classical Molecular Dynamics simulations to calculate the Potential of Mean Force for the connection of two identical nanoparticles in water; the fitting of the latter by a set of mathematical equations is the key for the upscale. Lastly, we perform Brownian Dynamics simulations where each nanoparticle is a spherical bead. This coarsening strategy allows studying the aggregation of a few thousand nanoparticles. Applying this novel procedure, we find three new molecular descriptors, namely, the aggregation free energy and two numerical parameters used to correct the observed deviation from the aggregation kinetic described by the Smoluchowski theory. Molecular descriptors can be fed into QSAR models to predict the toxicity of a material knowing its physicochemical properties, without having to conduct large scale experiments on living organisms.


1999 ◽  
Vol 593 ◽  
Author(s):  
Seung Mi Lee ◽  
Thomas Frauenheim ◽  
Marcus Elstner ◽  
Yong Gyoo Hwang ◽  
Young Hee Lee

ABSTRACTWe performed density-functional calculations to search for adsorption sites and predict maximum hydrogen storage capacity in carbon nanotubes. Our calculations show that the storage capacity of hydrogen, limited by the repulsive forces between H2 molecules inside nanotubes, increases linearly with tube diameters in single-walled nanotubes, whereas this value is independent of tube diameters in multi-walled nanotubes. We predict that H storage capacity in (10,10) nanotubes can exceed 14 wt % (161 kg H2/m3).


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 217
Author(s):  
Giulia Mancardi ◽  
Matteo Alberghini ◽  
Neus Aguilera-Porta ◽  
Monica Calatayud ◽  
Pietro Asinari ◽  
...  

Titanium dioxide nanoparticles have risen concerns about their possible toxicity and the European Food Safety Authority recently banned the use of TiO2 nano-additive in food products. Following the intent of relating nanomaterials atomic structure with their toxicity without having to conduct large-scale experiments on living organisms, we investigate the aggregation of titanium dioxide nanoparticles using a multi-scale technique: starting from ab initio Density Functional Theory to get an accurate determination of the energetics and electronic structure, we switch to classical Molecular Dynamics simulations to calculate the Potential of Mean Force for the connection of two identical nanoparticles in water; the fitting of the latter by a set of mathematical equations is the key for the upscale. Lastly, we perform Brownian Dynamics simulations where each nanoparticle is a spherical bead. This coarsening strategy allows studying the aggregation of a few thousand nanoparticles. Applying this novel procedure, we find three new molecular descriptors, namely, the aggregation free energy and two numerical parameters used to correct the observed deviation from the aggregation kinetics described by the Smoluchowski theory. Ultimately, molecular descriptors can be fed into QSAR models to predict the toxicity of a material knowing its physicochemical properties, enabling safe design strategies.


2019 ◽  
Author(s):  
Mingguang Chen ◽  
Wangxiang Li ◽  
Anshuman Kumar ◽  
Guanghui Li ◽  
Mikhail Itkis ◽  
...  

<p>Interconnecting the surfaces of nanomaterials without compromising their outstanding mechanical, thermal, and electronic properties is critical in the design of advanced bulk structures that still preserve the novel properties of their nanoscale constituents. As such, bridging the p-conjugated carbon surfaces of single-walled carbon nanotubes (SWNTs) has special implications in next-generation electronics. This study presents a rational path towards improvement of the electrical transport in aligned semiconducting SWNT films by deposition of metal atoms. The formation of conducting Cr-mediated pathways between the parallel SWNTs increases the transverse (intertube) conductance, while having negligible effect on the parallel (intratube) transport. In contrast, doping with Li has a predominant effect on the intratube electrical transport of aligned SWNT films. Large-scale first-principles calculations of electrical transport on aligned SWNTs show good agreement with the experimental electrical measurements and provide insight into the changes that different metal atoms exert on the density of states near the Fermi level of the SWNTs and the formation of transport channels. </p>


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3808 ◽  
Author(s):  
Blazej Podlesny ◽  
Bogumila Kumanek ◽  
Angana Borah ◽  
Ryohei Yamaguchi ◽  
Tomohiro Shiraki ◽  
...  

Single-walled carbon nanotubes (SWCNTs) remain one of the most promising materials of our times. One of the goals is to implement semiconducting and metallic SWCNTs in photonics and microelectronics, respectively. In this work, we demonstrated how such materials could be obtained from the parent material by using the aqueous two-phase extraction method (ATPE) at a large scale. We also developed a dedicated process on how to harvest the SWCNTs from the polymer matrices used to form the biphasic system. The technique is beneficial as it isolates SWCNTs with high purity while simultaneously maintaining their surface intact. To validate the utility of the metallic and semiconducting SWCNTs obtained this way, we transformed them into thin free-standing films and characterized their thermoelectric properties.


Sign in / Sign up

Export Citation Format

Share Document