DNA as a Support for Glucose Oxidase Immobilization at Prussian Blue-Modified Glassy Carbon Electrode in Biosensor Preparation

2006 ◽  
Vol 6 (11) ◽  
pp. 3539-3542
Author(s):  
A. K. M. Kafi ◽  
Dong-Yun Lee ◽  
Sang-Hyun Park ◽  
Young-Soo Kwon

An amperometric glucose biosensor has been developed using DNA as a matrix of Glucose oxidase (GOx) at Prussian-blue (PB)-modified glassy carbon (GC) electrode. GC electrode was chemically modified by the PB. GOx was immobilized together with DNA at the working area of the PB-modified electrode by placing a drop of the mixture of DNA and GOx. The response of the biosensor for glucose was evaluated amperometrically. Upon immobilization of glucose oxidase with DNA, the biosensor showed rapid response toward the glucose. On the other hand, no significant response was obtained in the absence of DNA. Experimental conditions influencing the biosensor performance were optimized and assessed. This biosensor offered an excellent electrochemical response for glucose concentration in μ mol level with high sensitivity and selectivity and short response time. The levels of the relative standard deviation (RSDs), (<4%) for the entire analyses reflected a highly reproducible sensor performance. Through the use of optimized conditions, a linear relationship between current and glucose concentration was obtained up to 4 × 10−4 M. In addition, this biosensor showed high reproducibility and stability.

The Analyst ◽  
2019 ◽  
Vol 144 (6) ◽  
pp. 1960-1967 ◽  
Author(s):  
Chao Chen ◽  
Pengcheng Zhao ◽  
Meijun Ni ◽  
Chunyan Li ◽  
Yixi Xie ◽  
...  

A temperature-induced sensing film consisting of poly(N-vinylcaprolactam) (PVCL), graphene oxide (GO) and glucose oxidase (GOD) was fabricated and used to modify a glassy carbon electrode (GCE).


2021 ◽  
Vol 21 (5) ◽  
pp. 3059-3064
Author(s):  
A. K. M. Kafi ◽  
Aizam Bin Kasri ◽  
Rajan Jose

The fabrication of a network of glucose oxidase-horseradish peroxidase/tin oxide (GOx-HRP/SnO2), immobilized onto a glassy carbon electrode (GCE) and its utilization as a biosensor for glucose detection is reported. The network established with GOx-HRP/SnO2 possess high sensitivity and stability by performing the electrocatalytic features in the sensing of glucose. The turbidity of fabrication had been scanned and analyzed using UV-vis spectroscopy. The morphology and composition of the fabricated GOx-HRP/SnO2 networks were characterized by scanning electron microscopy (SEM). Cyclic voltammetry and amperometry were employed to study the electrochemical properties of the proposed biosensor. The effect of applied electrode potential and pH were systemically investigated. The biosensor responds to glucose at work potential values between −400 mV, and exhibited a lower detection limit (0.025 mM) and long linear range (0.25 to 7.0 mM), and was resistant to common interferences.


2005 ◽  
Vol 19 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Mohammed A. Zaitoun

A spectrophotometric method is presented to determine glucose employing the sol-gel technique. Myoglobin (Mb) and glucose oxidase are encapsulated in a transparent and porous silica glass. The produced gel (xerogel) is then immersed in water where increments of glucose are added to the solution with stirring; glucose diffuses into the sol-gel glass pores and a series of reactions take place. Glucose is first oxidized by glucose oxidase and oxygen to gluconate and hydrogen peroxide is generated. The liberated hydrogen peroxide oxidizes the Mb heme (Fe2+into Fe3+). The higher is the glucose concentration added, the more is the H2O2generated, and the more is the Mb oxidation (Fe2+to Fe3+) and as a result the higher is the absorbance at 400 nm (negative peak, lower absorbance value). All measurements are performed at this wavelength (400 nm), the negative peak obtained by subtracting the absorption spectra of Mb before and after oxidation. Measuring the slope of the absorbance decay versus time at 400 nm monitors increments of added glucose. Each glucose concentration has an accompanying unique decay curve with a unique slope. The higher is the glucose concentration; the steeper is the decay curve (higher slope value). The calibration curve was linear up to 40 mM.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Sabriye Yusan ◽  
Mokhlesur M. Rahman ◽  
Nasir Mohamad ◽  
Tengku M. Arrif ◽  
Ahmad Zubaidi A. Latif ◽  
...  

A new bioenzymatic glucose biosensor for selective and sensitive detection of glucose was developed by the immobilization of glucose oxidase (GOD) onto selenium nanoparticle-mesoporous silica composite (MCM-41) matrix and then prepared as a carbon paste electrode (CPE). Cyclic voltammetry was employed to probe the catalytic behavior of the biosensor. A linear calibration plot is obtained over a wide concentration range of glucose from 1 × 10−5 to 2 × 10−3 M. Under optimal conditions, the biosensor exhibits high sensitivity (0.34 µA·mM−1), low detection limit (1 × 10−4 M), high affinity to glucose (Km = 0.02 mM), and also good reproducibility (R.S.D. 2.8%, n=10) and a stability of about ten days when stored dry at +4°C. Besides, the effects of pH value, scan rate, mediator effects on the glucose current, and electroactive interference of the biosensor were also discussed. As a result, the biosensor exhibited an excellent electrocatalytic response to glucose as well as unique stability and reproducibility.


Sign in / Sign up

Export Citation Format

Share Document