Preparation, Characterization and Spectroscopy of Eu3+ in Gd2O3 Nanorods

2008 ◽  
Vol 8 (3) ◽  
pp. 1398-1403 ◽  
Author(s):  
Liqin Liu ◽  
En Ma ◽  
Renfu Li ◽  
Xueyuan Chen

Eu3+:Gd2O3 nanorods were prepared by a hydrothermal method. X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and Fourier transform-infrared spectroscopy were used to characterize the resulting samples. Emission and excitation spectra were studied using xenon excited spectroscopic experiments at 10 K. Energy transfer from Gd3+ to Eu3+, from the band gap of the host to Eu3+, and from Eu3+ (S6) to Eu3+ (C2) was observed. The energy levels of Eu3+ at the C2 site of cubic Gd2O3 were experimentally determined according to the fluorescence spectra at 10 K, and fit well with the theoretical values. The standard deviation for the optimal fit was 12.9 cm−1. The fluorescent lifetime of 5D0 (2.3 ms at 295 K) was unusually longer than that of the bulk counterparts (0.94 ms), indicating a small filling factor (0.55) for the nanorod volume. However the lifetime of 5D1 was much shorter than that of the bulk counterparts, 65 μs at 10 K, 37 μs at 295 K.

2018 ◽  
Vol 43 (3-4) ◽  
pp. 201-210
Author(s):  
Raheleh Nikonam Mofrad ◽  
Sayed Khatiboleslam Sadrnezhaad ◽  
Jalil Vahdati Khaki

We determined the mechanism of mechanochemical synthesis of fluorapatite from CaO, CaF2 and P2O5 by characterisation of the intermediate compounds. We used atomic absorption spectroscopy, X-ray diffraction, field emission scanning electron microscopy, FTIR spectroscopy and transmission electron microscopy to find the transitional compounds. Investigation of the binary and ternary powder mixtures revealed the appearance of H3PO4, Ca(OH)2, Ca2P2O7 and CaCO3 as the intermediate compounds. At early stages of the milling, conversions of P2O5 to H3PO4 and CaO to Ca(OH)2 occurred in the wet atmosphere. Later, a combination of Ca(OH)2 and H3PO4 formed C a2P2O7 while the unreacted CaO was converted to CaCO3 by CO2 of the ambient atmosphere. Spherical crystalline Ca10 (PO4)6F2 particles formed after 48 hours of milling due to the reaction between Ca2P2O7, CaCO3 and CaF2.


2004 ◽  
Vol 19 (5) ◽  
pp. 1369-1373 ◽  
Author(s):  
Guozhen Shen ◽  
Di Chen ◽  
Kaibin Tang ◽  
Yitai Qian

In this paper, we reported the rapid synthesis of disklike (ZnSe)2·EN precursor via a simple and convenient polyol method. Annealing the precursor in argon stream at 500 °C resulted in the formation of ZnSe crystals with unique quasi-network structure. The obtained samples were characterized by powder x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, infrared absorbance spectra, and thermogravimetric analysis. The influence of PEG200 on the final products in the system was also discussed.


2007 ◽  
Vol 22 (9) ◽  
pp. 2505-2511 ◽  
Author(s):  
M. Damayanti ◽  
T. Sritharan ◽  
S.G. Mhaisalkar ◽  
E. Phoon ◽  
L. Chan

The reaction mechanisms and related microstructures in the Cu/Si, Ru/Si, and Cu/Ru/Si metallization system were studied experimentally. With the help of sheet resistance measurements, x-ray diffraction, field-emission scanning electron microscopy, secondary ion mass spectroscopy, and transmission electron microscopy, the metallization structure with Ru barrier layer was observed to fail completely at temperatures around 700 °C, regardless of the Ru thickness because of the formation of polycrystalline Ru2Si3 followed by Cu3Si protrusions.


2018 ◽  
Vol 24 (8) ◽  
pp. 5947-5952 ◽  
Author(s):  
M Ponnar ◽  
K Pushpanathan

This article focuses the synthesis and characterization of copper doped cerium oxide nanospheres synthesized by chemical precipitation method. Synthesized nanopowders were characterized by means of X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectrometer and photoluminescence spectrometer. X-ray diffraction study confirmed the copper doping without disturbing the face centred cubic structure of cerium oxide. Field emission scanning electron microscope and transmission electron microscope study also confirmed the existence of sphere like nanoparticles. The optical absorption spectrum shows that the synthesized samples exhibit strong absorption in ultraviolet region and also it confirmed the decrease in energy gap of cerium oxide on copper doping. The photoluminescence study revealed that the blue emission is attributed to the fast oxygen transportation of copper doped cerium oxide nanoparticles.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2021 ◽  
Vol 19 (11) ◽  
pp. 66-71
Author(s):  
Maithm A. Obaid ◽  
Suha A Fadaam ◽  
Osama S. Hashim

The aim of this study is to prepare gold nanoparticles by a simple chemical method at a temperature of 70°C. The solution was dried on glass basest by Casting method, the rate of five drops per sample At a temperature 100 C. Then the structural and optical properties have been confirmed by X-ray diffraction, scanning electron microscopy (SEM) and Transmission Electron microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and spectrum.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1979 ◽  
Author(s):  
Jing Zhang ◽  
Shibo Li ◽  
Shujun Hu ◽  
Yang Zhou

Ti3C2Tx MXene, a new 2D nanosheet material, is expected to be an attractive reinforcement of metal matrix composites because its surfaces are terminated with Ti and/or functional groups of –OH, –O, and –F which improve its wettability with metals. Thus, new Ti3C2Tx/Al composites with strong interfaces and novel properties are desired. To prepare such composites, the chemical stability of Ti3C2Tx with Al at high temperatures should be investigated. This work first reports on the chemical stability of Ti3C2Tx MXene with Al in the temperature range 500–700 °C. Ti3C2Tx is thermally stable with Al at temperatures below 700 °C, but it reacts with Al to form Al3Ti and TiC at temperatures above 700 °C. The chemical stability and microstructure of the Ti3C2Tx/Al samples were investigated by differential scanning calorimeter, X-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy.


2011 ◽  
Vol 412 ◽  
pp. 5-8 ◽  
Author(s):  
Ying Zhang ◽  
Ai Chen ◽  
Hai Rong Wang ◽  
Ze Song Li ◽  
Ying Ping Shen

The present article reports the results of studies related to the synthesis of nanocrystalline ceria powder by combustion process using salt combustion aid. Cerium nitrate as oxidant and urea as fuel were used as reagents, Sodium Chloride was compared as combustion aid. The phase analysis and particle size were compared. The product was characterized by X-ray diffraction, Scanning electron microscopy and Transmission electron microscopy. The results showed that employment of starting fuel with combustion aid resulted in synthesizing nanocrystalline ceria powder with fine agglomerates. By using combustion aid, the energetics of the combustion reaction and particle characteristics have been changed.


Sign in / Sign up

Export Citation Format

Share Document