Preparation and In Vitro Evaluation of Apigenin Loaded Lipid Nanocapsules

2013 ◽  
Vol 13 (10) ◽  
pp. 6546-6552 ◽  
Author(s):  
Buyun Ding ◽  
Hao Chen ◽  
Chao Wang ◽  
Yingjie Zhai ◽  
Guangxi Zhai
Keyword(s):  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 595
Author(s):  
Norraseth Kaeokhamloed ◽  
Emillie Roger ◽  
Jérôme Béjaud ◽  
Nolwenn Lautram ◽  
Florence Manero ◽  
...  

Standard models used for evaluating the absorption of nanoparticles like Caco-2 ignore the presence of vascular endothelium, which is a part of the intestinal multi-layered barrier structure. Therefore, a coculture between the Caco-2 epithelium and HMEC-1 (Human Microvascular Endothelial Cell type 1) on a Transwell® insert has been developed. The model has been validated for (a) membrane morphology by transmission electron microscope (TEM); (b) ZO-1 and β-catenin expression by immunoassay; (c) membrane integrity by trans-epithelial electrical resistance (TEER) measurement; and (d) apparent permeability of drugs from different biopharmaceutical classification system (BCS) classes. Lipid nanocapsules (LNCs) were formulated with different sizes (55 and 85 nm) and surface modifications (DSPE-mPEG (2000) and stearylamine). Nanocapsule integrity and particle concentration were monitored using the Förster resonance energy transfer (FRET) technique. The result showed that surface modification by DSPE-mPEG (2000) increased the absorption of 55-nm LNCs in the coculture model but not in the Caco-2. Summarily, the coculture model was validated as a tool for evaluating the intestinal absorption of drugs and nanoparticles. The new coculture model has a different LNCs absorption mechanism suggesting the importance of intestinal endothelium and reveals that the surface modification of LNCs can modify the in vitro oral absorption.


2017 ◽  
Vol 34 (6) ◽  
pp. 571-581 ◽  
Author(s):  
Nan Xia ◽  
Tian Liu ◽  
Qiang Wang ◽  
Qiang Xia ◽  
Xiaoli Bian

2010 ◽  
Vol 15 (23-24) ◽  
pp. 1105-1105
Author(s):  
P. Sánchez-Moreno ◽  
H. Boulaiz ◽  
J.A. Marchal ◽  
J.L. Ortega-Vinuesa ◽  
J.M. Peula García ◽  
...  

Author(s):  
Delphine Séhédic ◽  
Loris Roncali ◽  
Amel Djoudi ◽  
Nela Buchtova ◽  
Sylvie Avril ◽  
...  

Inhibition of the PI3K/Akt/mTOR signaling pathway represents a potential issue for the treatment of cancer, including glioblastoma. As such, rapamycin that inhibits the mechanistic target of rapamycin (mTOR), the downstream effector of this signaling pathway, is of great interest. However, clinical development of rapamycin has floundered due to the lack of a suitable formulation of delivery systems. In the present study, a novel method for the formulation of safe rapamycin nanocarriers is investigated. A phase inversion process was adapted to prepare lipid nanocapsules (LNCs) loaded with the lipophilic and temperature sensitive rapamycin. Rapamycin-loaded LNCs (LNC-rapa) are ~110 nm in diameter with a low polydispersity index (<0.05) and the zeta potential of about −5 mV. The encapsulation efficiency, determined by spectrophotometry conjugated with filtration/exclusion, was found to be about 69%, which represents 0.6 wt% of loading capacity. Western blot analysis showed that LNC-rapa do not act synergistically with X-ray beam radiation in U87MG glioblastoma model in vitro. Nevertheless, it demonstrated the selective inhibition of the phosphorylation of mTORC1 signaling pathway on Ser2448 at a concentration of 1 μM rapamycin in serum-free medium. Interestingly, cells cultivated in normoxia (21% O2) seem to be more sensitive to mTOR inhibition by rapamycin than those cultivated in hypoxia (0.4% O2). Finally, we also established that mTOR phosphorylation inhibition by LNC-rapa induced a negative feedback through the activation of Akt phosphorylation. This phenomenon was more noticeable after stabilization of HIF-1α in hypoxia.


2019 ◽  
Vol 16 (5) ◽  
pp. 1999-2010 ◽  
Author(s):  
Juan Aparicio-Blanco ◽  
Ignacio A. Romero ◽  
David K. Male ◽  
Karla Slowing ◽  
Luis García-García ◽  
...  

2016 ◽  
Vol 238 ◽  
pp. 253-262 ◽  
Author(s):  
Dario Carradori ◽  
Patrick Saulnier ◽  
Véronique Préat ◽  
Anne des Rieux ◽  
Joel Eyer

Sign in / Sign up

Export Citation Format

Share Document