Electrocatalytic Reduction of Hydrogen Peroxide and Its Non-Enzymatic Electrochemical Detection Using Silver Nanoparticles Anchored on Reduced Graphene Oxide

2019 ◽  
Vol 19 (11) ◽  
pp. 7054-7063 ◽  
Author(s):  
Nurul Izrini Ikhsan ◽  
Perumal Rameshkumar ◽  
Norazriena Yusoff ◽  
Nay Ming Huang

Silver-reduced graphene oxide (Ag-rGO) nanohybrid was synthesized by applying a slight modification to the Turkevich method using trisodium citrate as a reducing and stabilizing agent to catalyze the non-enzymatic electrochemical detection of hydrogen peroxide (H2O2). Spherical silver nanoparticles (AgNPs) with an average particle size of 2.2 nm surfaced on reduced graphene oxide (rGO) sheets. Cyclic voltammograms (CV) obtained from glassy carbon (GC) electrode coated with Ag-rGO nanohybrid (4 mM) exhibited a peak at an overpotential of -0.52 V, with a larger faradaic current for the reduction of H2O2. Using the modified electrode for the linear sweep voltammetry (LSV) detection of H2O2, the detection limit and sensitivity were determined to be 4.8 μM (S/N ═ 3) and 0.0262 μA μM−1, respectively. The sensor appeared selective and stable towards H2O2 in the presence of possible interference, and it also demonstrated good recoveries of H2O2 concentration in real water samples.

2021 ◽  
Vol 317 ◽  
pp. 208-213
Author(s):  
Nurul Izrini Ikhsan ◽  
Nurul Ain Mohamed Zamri

Here, we report the synthesis of silver nanoparticles-reduced graphene oxide (AgNPs-rGO) hybrid for simple and eco-friendly method. Silver nanoparticles (AgNPs) were successfully deposited on reduced graphene oxide (rGO) sheets to form (AgNPs-rGO) hybrid using lemon extract as a reducing and stabilizing agent. The products form a stable aqueous solution without any surfactant stabilizers and this makes it possible to produce (AgNPs-rGO) hybrid on a large scale using low-cost solution processing technique. The synthesis of nanohybrid was examed at different ratio of reducing agent (1:1, 1:2, 1:4) and characterized using UV-Visible (UV-Vis) absorption spectrum, X-ray diffraction (XRD), Raman spectroscopy analyses and transmission electron microscopy (TEM) analyses. From UV-Vis absorption spectrum, the (AgNPs-rGO) (1:1) hybrid result shows the sharp peak at 433 nm indicating the accomplishment formation of AgNPs on the surface of rGO sheets. Crystalline and spherical AgNPs with an average particle size of 21 nm were found in the (AgNPs-rGO) hybrid with the assistance of 1:1 reducing agent. Furthermore, (AgNPs-rGO) (1:1) hybrid exhibit fast electron-transfer kinetics for electrochemical reaction of Fe (CN)63-/4- redox couple compared to other controlled modified electrodes, suggesting the potential applications for electrocatalysis and electrochemical sensor.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mohamed M. El-Zahed ◽  
Zakaria A. Baka ◽  
Mohamed I. Abou-Dobara ◽  
Ahmed K. El-Sayed ◽  
Magy M. Aboser ◽  
...  

AbstractA novel biosynthesis of dual reduced graphene oxide/silver nanocomposites (rGO/AgNC) using the crude metabolite of Escherichia coli D8 (MF06257) strain and sunlight is introduced in this work. Physicochemical analysis of these rGO/AgNC revealed that they are sheet-like structures having spherically shaped silver nanoparticles (AgNPs) with an average particle size of 8 to 17 nm, and their absorption peak ranged from 350 to 450 nm. The biosynthesized rGO/AgNC were characterized by UV–vis and FT-IR spectra, X-ray diffraction, Zeta potential and transmission electron microscopy. After the injection of these nanocomposites to mice, their uptake by the kidney and liver has been proven by the ultrastructural observation and estimation of the hepatic and renal silver content. These nanocomposites caused a moderate toxicity for both organs. Changes in the liver and kidney functions and histopathological effects had been observed. The rGO/AgNC revealed a remarkable antitumor effect. They showed a dose-dependent cytotoxic effect on Ehrlich ascites carcinoma (EAC) cells in vitro. Treatment of mice bearing EAC tumors intraperitoneally with 10 mg/kg rGO/AgNC showed an antiproliferative effect on EAC cells, reduced ascites volume, and maintained mice survival. The results indicate that this green synergy of silver nanoparticles with reduced graphene oxide may have a promising potential in cancer therapy.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 498
Author(s):  
Nurul Izrini Ikhsan ◽  
Nur Farahah Jaffar

An eco-friendly solution-based chemical approach has been used to prepare silver nanoparticles-reduced graphene oxide (AgNPs-rGO) nanohybrid using Zingiber officinale extract as a reducing and stabilizing agent. The products form a stable aqueous solution without any surfactant stabilizers and hence makes it possible to produce AgNPs-rGO nanohybrid on a large scale using low-cost solution processing technique. The nanohybrid was monitored at different concentration of GO solution (0.1 mg/ml, 0.5 mg/ml and 1.0 mg/ml) and characterized using UV- visible (UV-Vis) absorption spectrum, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy analyses. From the UV-Vis analysis, the formation of silver nanoparticles (AgNPs) was confirmed and showed a surface plasmon resonance (SPR) absorption band at 420 nm for nanohybrids with GO concentration of 0.5 mg/ml. Raman spectra shows an increase in ID/IG ratio for rGO with values of 1.007 corresponding to the concentration of GO (0.5mg/ml) as compared to GO (0.88). Completely spherical Ag nanoparticles (NPs) were found at a nanohybrid with 0.5 mg/ml of GO with an average particle size of 20 nm. The AgNPs-rGO(0.5) nanohybrid exhibit fast electron-transfer kinetics for electrochemical reaction of Fe (CN)63-/4- redox couple, suggesting the potential applications for electrocatalysis and electrochemical sensor.  


2020 ◽  
Vol 7 (10) ◽  
pp. 1981-1994 ◽  
Author(s):  
Kuo-Yuan Hwa ◽  
Tata Sanjay Kanna Sharma ◽  
Anindita Ganguly

We report a highly precise and sensitive electrochemical sensor to detect 4-nitrophenol based on halloysite nanotubes with silver nanoparticles decorated on reduced graphene oxide.


2017 ◽  
Vol 31 (15) ◽  
pp. 1750118 ◽  
Author(s):  
Abdur Rauf ◽  
Syed Sohail Ahmad Shah ◽  
Sobia Allah Rakha ◽  
Munazza Gul ◽  
Ishaq Ahmad ◽  
...  

A chemical two-step approach based on solvothermal technique has been adopted to synthesize the reduced graphene oxide (rGO)/Fe2O3 hybrid materials. The rGO was prepurified by acidic treatment, followed by sensitization to attach the desired functional groups. The structural, compositional, morphological and magnetic analyzes of the prepared samples were carried out using various characterization techniques. The fabricated rGO/Fe2O3 heterostructures were confirmed by X-ray diffraction analysis and Fourier transform infrared spectroscopy. Raman spectroscopy evidenced the fabrication of multilayer graphene and scanning electron microscopy was carried out to study the morphology of the prepared samples. The average particle size of Fe2O3 nanoparticles (NPs) loaded on rGO was found to be [Formula: see text]20 nm, as was observed during transmission electron microscopy. Thermogravimetric analysis of rGO/Fe2O3 hybrid structures was performed to investigate their thermal behaviors. It was evidenced that the incorporation of Fe2O3 NPs into rGO enhanced its thermal stability. Vibrating sample magnetometry showed that ferromagnetic character was induced in rGO due to involvement of Fe2O3 NPs. The rGO/Fe2O3 hybrid structures can be considered as a competent material for fabrication of various magnetic devices.


RSC Advances ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 2632-2640 ◽  
Author(s):  
Shoufang Cui ◽  
Yu Li ◽  
Dongmei Deng ◽  
Lilan Zeng ◽  
Xiaoxia Yan ◽  
...  

MnO2/RGO/P25 nanocomposites were synthesized with a photo-reduction approach for electrochemical detection of H2O2.


Sign in / Sign up

Export Citation Format

Share Document