Inducing the magnetic character in reduced graphene oxide through incorporation of Fe2O3 nanoparticles

2017 ◽  
Vol 31 (15) ◽  
pp. 1750118 ◽  
Author(s):  
Abdur Rauf ◽  
Syed Sohail Ahmad Shah ◽  
Sobia Allah Rakha ◽  
Munazza Gul ◽  
Ishaq Ahmad ◽  
...  

A chemical two-step approach based on solvothermal technique has been adopted to synthesize the reduced graphene oxide (rGO)/Fe2O3 hybrid materials. The rGO was prepurified by acidic treatment, followed by sensitization to attach the desired functional groups. The structural, compositional, morphological and magnetic analyzes of the prepared samples were carried out using various characterization techniques. The fabricated rGO/Fe2O3 heterostructures were confirmed by X-ray diffraction analysis and Fourier transform infrared spectroscopy. Raman spectroscopy evidenced the fabrication of multilayer graphene and scanning electron microscopy was carried out to study the morphology of the prepared samples. The average particle size of Fe2O3 nanoparticles (NPs) loaded on rGO was found to be [Formula: see text]20 nm, as was observed during transmission electron microscopy. Thermogravimetric analysis of rGO/Fe2O3 hybrid structures was performed to investigate their thermal behaviors. It was evidenced that the incorporation of Fe2O3 NPs into rGO enhanced its thermal stability. Vibrating sample magnetometry showed that ferromagnetic character was induced in rGO due to involvement of Fe2O3 NPs. The rGO/Fe2O3 hybrid structures can be considered as a competent material for fabrication of various magnetic devices.

Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3643 ◽  
Author(s):  
Venkateshaiah ◽  
Silvestri ◽  
Ramakrishnan ◽  
Wacławek ◽  
Padil ◽  
...  

This study investigates an environmentally benign approach to generate platinum nanoparticles (Pt NP) supported on the reduced graphene oxide (RGO) by non-edible gum waste of gum kondagogu (GK). The reaction adheres to the green chemistry approach by using an aqueous medium and a nontoxic natural reductant—GK—whose abundant hydroxyl groups facilitate in the reduction process of platinum salt and helps as well in the homogenous distribution of ensued Pt NP on RGO sheets. Scanning Electron Microscopy (SEM) confirmed the formation of kondagogu gum/reduced graphene oxide framed spherical platinum nanoparticles (RGO-Pt) with an average particle size of 3.3 ± 0.6 nm, as affirmed by Transmission Electron Microscopy (TEM). X-ray Diffraction (XRD) results indicated that the Pt NPs formed are crystalline with a face-centered cubic structure, while morphological analysis by XRD and Raman spectroscopy revealed a simultaneous reduction of GO and Pt. The hydrogenation of 4-nitrophenol could be accomplished in the superior catalytic performance of RGO-Pt. The current strategy emphasizes a simple, fast and environmentally benign technique to generate low-cost gum waste supported nanoparticles with a commendable catalytic activity that can be exploited in environmental applications.


2021 ◽  
Vol 317 ◽  
pp. 208-213
Author(s):  
Nurul Izrini Ikhsan ◽  
Nurul Ain Mohamed Zamri

Here, we report the synthesis of silver nanoparticles-reduced graphene oxide (AgNPs-rGO) hybrid for simple and eco-friendly method. Silver nanoparticles (AgNPs) were successfully deposited on reduced graphene oxide (rGO) sheets to form (AgNPs-rGO) hybrid using lemon extract as a reducing and stabilizing agent. The products form a stable aqueous solution without any surfactant stabilizers and this makes it possible to produce (AgNPs-rGO) hybrid on a large scale using low-cost solution processing technique. The synthesis of nanohybrid was examed at different ratio of reducing agent (1:1, 1:2, 1:4) and characterized using UV-Visible (UV-Vis) absorption spectrum, X-ray diffraction (XRD), Raman spectroscopy analyses and transmission electron microscopy (TEM) analyses. From UV-Vis absorption spectrum, the (AgNPs-rGO) (1:1) hybrid result shows the sharp peak at 433 nm indicating the accomplishment formation of AgNPs on the surface of rGO sheets. Crystalline and spherical AgNPs with an average particle size of 21 nm were found in the (AgNPs-rGO) hybrid with the assistance of 1:1 reducing agent. Furthermore, (AgNPs-rGO) (1:1) hybrid exhibit fast electron-transfer kinetics for electrochemical reaction of Fe (CN)63-/4- redox couple compared to other controlled modified electrodes, suggesting the potential applications for electrocatalysis and electrochemical sensor.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mohamed M. El-Zahed ◽  
Zakaria A. Baka ◽  
Mohamed I. Abou-Dobara ◽  
Ahmed K. El-Sayed ◽  
Magy M. Aboser ◽  
...  

AbstractA novel biosynthesis of dual reduced graphene oxide/silver nanocomposites (rGO/AgNC) using the crude metabolite of Escherichia coli D8 (MF06257) strain and sunlight is introduced in this work. Physicochemical analysis of these rGO/AgNC revealed that they are sheet-like structures having spherically shaped silver nanoparticles (AgNPs) with an average particle size of 8 to 17 nm, and their absorption peak ranged from 350 to 450 nm. The biosynthesized rGO/AgNC were characterized by UV–vis and FT-IR spectra, X-ray diffraction, Zeta potential and transmission electron microscopy. After the injection of these nanocomposites to mice, their uptake by the kidney and liver has been proven by the ultrastructural observation and estimation of the hepatic and renal silver content. These nanocomposites caused a moderate toxicity for both organs. Changes in the liver and kidney functions and histopathological effects had been observed. The rGO/AgNC revealed a remarkable antitumor effect. They showed a dose-dependent cytotoxic effect on Ehrlich ascites carcinoma (EAC) cells in vitro. Treatment of mice bearing EAC tumors intraperitoneally with 10 mg/kg rGO/AgNC showed an antiproliferative effect on EAC cells, reduced ascites volume, and maintained mice survival. The results indicate that this green synergy of silver nanoparticles with reduced graphene oxide may have a promising potential in cancer therapy.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 498
Author(s):  
Nurul Izrini Ikhsan ◽  
Nur Farahah Jaffar

An eco-friendly solution-based chemical approach has been used to prepare silver nanoparticles-reduced graphene oxide (AgNPs-rGO) nanohybrid using Zingiber officinale extract as a reducing and stabilizing agent. The products form a stable aqueous solution without any surfactant stabilizers and hence makes it possible to produce AgNPs-rGO nanohybrid on a large scale using low-cost solution processing technique. The nanohybrid was monitored at different concentration of GO solution (0.1 mg/ml, 0.5 mg/ml and 1.0 mg/ml) and characterized using UV- visible (UV-Vis) absorption spectrum, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy analyses. From the UV-Vis analysis, the formation of silver nanoparticles (AgNPs) was confirmed and showed a surface plasmon resonance (SPR) absorption band at 420 nm for nanohybrids with GO concentration of 0.5 mg/ml. Raman spectra shows an increase in ID/IG ratio for rGO with values of 1.007 corresponding to the concentration of GO (0.5mg/ml) as compared to GO (0.88). Completely spherical Ag nanoparticles (NPs) were found at a nanohybrid with 0.5 mg/ml of GO with an average particle size of 20 nm. The AgNPs-rGO(0.5) nanohybrid exhibit fast electron-transfer kinetics for electrochemical reaction of Fe (CN)63-/4- redox couple, suggesting the potential applications for electrocatalysis and electrochemical sensor.  


2019 ◽  
Vol 19 (11) ◽  
pp. 7054-7063 ◽  
Author(s):  
Nurul Izrini Ikhsan ◽  
Perumal Rameshkumar ◽  
Norazriena Yusoff ◽  
Nay Ming Huang

Silver-reduced graphene oxide (Ag-rGO) nanohybrid was synthesized by applying a slight modification to the Turkevich method using trisodium citrate as a reducing and stabilizing agent to catalyze the non-enzymatic electrochemical detection of hydrogen peroxide (H2O2). Spherical silver nanoparticles (AgNPs) with an average particle size of 2.2 nm surfaced on reduced graphene oxide (rGO) sheets. Cyclic voltammograms (CV) obtained from glassy carbon (GC) electrode coated with Ag-rGO nanohybrid (4 mM) exhibited a peak at an overpotential of -0.52 V, with a larger faradaic current for the reduction of H2O2. Using the modified electrode for the linear sweep voltammetry (LSV) detection of H2O2, the detection limit and sensitivity were determined to be 4.8 μM (S/N ═ 3) and 0.0262 μA μM−1, respectively. The sensor appeared selective and stable towards H2O2 in the presence of possible interference, and it also demonstrated good recoveries of H2O2 concentration in real water samples.


2014 ◽  
Vol 938 ◽  
pp. 91-96
Author(s):  
Mukul Jain Ganpath ◽  
Rajesh Rajendiran ◽  
Venkatesan Rengarajan

This study focuses on the preparation and characterization of Nickel oxide nanoparticles (NiONPs) supported on the reduced graphene oxide (r-GO) surface by a simple ultra-sonochemical method (r-GO-NiONPs). The formation of the r-GO was confirmed by FT-IR spectroscopy. The layer content of the r-GO was characterised by Raman spectroscopy. The crystalline nature and average particle size of the NiONPs were inferred by Powder-XRD spectroscopy. The surface morphology of the prepared nanoparticle was studied by the Scanning Electron Microscopy (SEM). The total surface area of the r-GO-NiONPs was ascertained by Nitrogen gas BET adsorption isotherm. Surface area of r-GO-NiONPs is 282 m2g-1 which is little over twice of Graphene Oxide (GO) 132 m2g-1. The magnetic properties of the prepared r-GO-NiONPs was studied using Vibrating Sample Magnetometer (VSM). Field dependent magnetization studies of r-GO-NiONPs delivers a very promising result.


2021 ◽  
Author(s):  
Mohamed M. El-Zahed ◽  
Zakaria Awad Baka ◽  
Mohamed Ismail Abou-Dobara ◽  
Ahmed Kassem El-Sayed ◽  
Magy Mohamed Aboser ◽  
...  

Abstract A novel biosynthesis of dual reduced graphene oxide/silver nanocomposites (rGO/AgNC) using the crude metabolite of Escherichia coli D8 (MF06257) strain and sunlight is introduced in this work. Physicochemical analysis of these rGO/AgNC revealed that they are sheet-like structures having spherically shaped AgNPs with an average particle size of 8 to 17 nm, and their absorption peak ranged from 350 to 450 nm. The biosynthesized rGO/AgNC were characterized by UV-Vis and FT-IR spectra, X-ray diffraction and transmission electron microscopy. After the injection of these nanocomposites to mice, their uptake by the kidney and liver has been proven by the ultrastructural observation and estimation of the hepatic and renal silver content. These nanocomposites caused a moderate toxicity for both organs. Changes in the liver and kidney functions and histopathological effects had been observed. The rGO/AgNC revealed a remarkable antitumor effect. They showed a dose-dependent cytotoxic effect on Ehrlich ascites carcinoma (EAC) cells in vitro. Treatment of mice bearing EAC tumors intraperitoneally with 10 mg/kg rGO/AgNC showed an antiproliferative effect on EAC cells, reduced ascites volume, and maintained mice survival. The results indicate that this green synergy of silver nanoparticles with reduced-graphene oxide may have a promising potential in cancer therapy.


2020 ◽  
Vol 20 (7) ◽  
pp. 4035-4046
Author(s):  
Rengasamy Dhanabal ◽  
Dhanasekaran Naveena ◽  
Sivan Velmathi ◽  
Arumugam Chandra Bose

Using a simple solution based synthesis route, hexagonal MoO3 (h-MoO3) nanorods on reduced graphene oxide (RGO) sheets were prepared. The structure and morphology of resulting RGO-MoO3 nanocomposite were characterized using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The optical property was studied using UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence spectroscopy (PL). The RGO-MoO3 nanocomposites were used as an electrode for supercapacitor application and photocatalyst for photodegradation of methylene blue (MB) and rhodamine B (RhB) under visible light irradiation. We demonstrated that the RGO-MoO3 electrode is capable of delivering high specific capacitance of 134 F/g at current density of 1 A/g with outstanding cyclic stability for 2000 cycles. The RGOMoO3 photocatalyst degrades 95% of MB dye within 90 min, and a considerable recyclability up to 4 cycles was observed. The quenching effect of scavengers test confirms holes are main reactive species in the photocatalytic degradation of MB. Further, the charge transfer process between RGO and MoO3 was schematically demonstrated.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 666
Author(s):  
Xinchuan Fan ◽  
Yue Hu ◽  
Yijun Zhang ◽  
Jiachen Lu ◽  
Xiaofeng Chen ◽  
...  

Reduced graphene oxide–epoxy grafted poly(styrene-co-acrylate) composites (GESA) were prepared by anchoring different amount of epoxy modified poly(styrene-co-acrylate) (EPSA) onto reduced graphene oxide (rGO) sheets through π–π electrostatic attraction. The GESA composites were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The anti-corrosion properties of rGO/EPSA composites were evaluated by electro-chemical impedance spectroscopy (EIS) in hydroxyl-polyacrylate coating, and the results revealed that the corrosion rate was decreased from 3.509 × 10−1 to 1.394 × 10−6 mm/a.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1356 ◽  
Author(s):  
Xue Nie ◽  
Rui Zhang ◽  
Zheng Tang ◽  
Haiyan Wang ◽  
Peihong Deng ◽  
...  

In this paper, CeO2 nanoparticles were synthesized by the solvothermal method and dispersed uniformly in graphene oxide (GO) aqueous solution by ultrasonication. The homogeneous CeO2-GO dispersion was coated on the surface of a glassy carbon electrode (GCE), and the CeO2/electrochemically reduced graphene oxide modified electrode (CeO2/ERGO/GCE) was obtained by potentiostatic reduction. The results of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) showed that CeO2 nanocrystals were uniformly coated by gossamer like ERGO nanosheets. The electrochemical behavior of vanillin on the CeO2/ERGO/GCE was studied by cyclic voltammetry (CV). It was found that the CeO2/ERGO/GCE has high electrocatalytic activity and good electrochemical performance for vanillin oxidation. Using the second derivative linear sweep voltammetry (SDLSV), the CeO2/ERGO/GCE provides a wide range of 0.04–20 µM and 20 µM–100 µM for vanillin detection, and the detection limit is estimated to be 0.01 µM after 120 s accumulation. This method has been successfully applied to the vanillin detection in some commercial foods.


Sign in / Sign up

Export Citation Format

Share Document