Controllable Synthesis of Modified Porous Anatase TiO2 with High Photocatalytic Activity

2021 ◽  
Vol 21 (11) ◽  
pp. 5742-5748
Author(s):  
Mei-Qing Fan ◽  
Heng-Yi Yuan ◽  
Cheng Qiu ◽  
Hong-Xia Zhao ◽  
Xu Zeng ◽  
...  

In this study, we added ZrO2 and Y2O3 to stabilize the anatase TiO2 phase at higher temperatures. Composite mesoporous TiO2/ZrO2/Y2O3 (TZY) oxides were prepared by a sol-gel method, and triblockcopolymer P123 and PEG was used as templates. The properties of the synthesized materials were characterized using X-Ray diffraction (XRD), Raman scattering, N2 adsorption/desorption, and UV-Visible spectrophotometry (UV-Vis) methods et al. The samples prepared using P123 and PEG as double-template exhibited smaller particles and a higher specific surface area than the samples prepared using P123 and PEG as single-template. Furthermore, crystal phase transition from anatase to rutile occurred later in the case of the double-template method. After introducing ZrO 2and Y2O3, the crystal phase transition and the growth of crystallites were severely suppressed. The results indicated that the RhB degradation efficiency for the double-template method was 99.24%, while the RhB degradation efficiency with TZY/P123 and TZY/PEG samples was 97.43 and 98.18%, respectively.

2020 ◽  
Vol 58 (3A) ◽  
pp. 13
Author(s):  
Nguyễn Thị Thu Trang ◽  
Trần Quang Vinh ◽  
Nguyễn Thành Đồng ◽  
Phạm Tuấn Linh ◽  
Nguyễn Viết Hoàng ◽  
...  

Ordered SBA-15 mesoporous silica support was synthesized by a sol-gel method using triblock copolymer Pluronic P123 and immobilized with different amounts of photocatalyst TiO2. The synthesized composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption-desorption isotherms. The synthesized materials possessed specific surface areas SBET of 768 m2/g, 544 m2/g, 421 m2/g and 333 m2/g at the TiO2:SiO2 ratio of 0, 0.25, 1.0 and 5.0, respectively. The adsorption capacities and photocatalytic activities under UV light irradiation of these materials were evaluated for Norfloxacin degradation. Experimental results indicate that the highest activity was observed on the sample with TiO2:SiO2 ratio of 1.


Author(s):  
Chunhua Hu ◽  
Jürgen Huster ◽  
Ullrich Englert

AbstractIn the solid state the mononuclear tetrahedral complex dibromobis(4-vinylpyridine)zinc shows a reversible crystal-to-crystal phase transition which was studied by temperature dependent single crystal X-ray diffraction experiments. At low temperatures the compound crystallizes in space group


2021 ◽  
Vol 125 (8) ◽  
pp. 4860-4868
Author(s):  
Zhaojun Zhang ◽  
Klara Suchan ◽  
Jun Li ◽  
Crispin Hetherington ◽  
Alexander Kiligaridis ◽  
...  

2008 ◽  
pp. 4927 ◽  
Author(s):  
David Bardelang ◽  
Konstantin A. Udachin ◽  
Roberto Anedda ◽  
Igor Moudrakovski ◽  
Donald M. Leek ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


2011 ◽  
Vol 236-238 ◽  
pp. 2110-2113
Author(s):  
Hong Liu ◽  
Meng Yang Wang ◽  
Wei Ran Cao

The hexagonal mesoporous silica (HMS) nano-particles were prepared in mixture of 1-butyl-3-methyl-imidazolium tetrafluoroborate (BMIM+BF4-) ionic liquid and water by a sol-gel method. The structure and morphology of obtained materials were characterized by X-ray powder diffraction (XRD), N2adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The influence of the amount of BMIM+BF4-was investigated. It was shown that the synthesized materials have discrete and uniform spherical morphology with the size in the range of 68-177 nm (obtained from DLS measurements), and the particle size of HMS can be controlled by varying the amount of BMIM+BF4-.


Sign in / Sign up

Export Citation Format

Share Document