Error Calculating and Compensating Method of All-Optical Fiber Current Transformer in ± 10 kV DC Distribution Network

2019 ◽  
Vol 14 (11) ◽  
pp. 1606-1615
Author(s):  
Jicheng Yu ◽  
Changxi Yue ◽  
Jun Li ◽  
Dengyun Li ◽  
He Li

Current transformer is one of the main equipment in ±10 kV DC distribution network. Traditional electromagnetic current transformer has poor anti-jamming capacity and poor insulation, so it cannot realize transient protection. The emergence of all-optical fiber current transformer brings solutions to these problems, which has attracted more and more attention. In this study, aiming at the problem of error and compensation of λ/4 waveform of all-fiber current transformer, the fabrication method of λ/4 waveform is studied, the mathematical model of the waveform is established, the influence of the waveform error on the scale factor is analyzed, and a calculating device of angle difference and ratio difference to compare the error is designed. The device adopts the principle of traceability of quantities to collect the state data of the wave plate. At the same time, in order to collect data for errors, database technology and network technology are used to realize remote transmission of monitoring data. The error of the λ/4 wave plate is compensated, the bidirectional principle generated by the birefringence in the fiber ring is analyzed, and the data logic description of the transformer sensitive ring is performed. The phase delay and the angle of the shaft are selected as the main factors causing the error. Compensation is performed by means of peak segmentation and variable cancellation. In the experimental process, compared with the error sampling of the traditional transformer, the error calculated by the current amplitude and phase angle parameters obtained by the all-fiber current transformer is more accurate, and the compensation scheme can suppress the size of the birefringence and improve sensing accuracy of fiber optic current transformers. This study provides a powerful reference for the error analysis of all-fiber current transformer λ/4 wave plates, which is beneficial to promote the better application of such current transformers.

2014 ◽  
Vol 672-674 ◽  
pp. 984-988
Author(s):  
Biao Su ◽  
Li Xue Li ◽  
Yi Hui Zheng ◽  
Xin Wang ◽  
Yan Liu ◽  
...  

Electronic current transformers are more suitable for the development of power system compared with traditional electromagnetic current transformers. Rogowski coil current transformer is one of three electric current transformers. According to the measurement principle of Rogowski coils, the equivalent circuit of PCB Rogowski coils is analyzed. By using four PCB Rogowski coils combined, a PCB Rogowski coil current transformer is designed and tested. The results show that the designed PCB Rogowski coil transformer has good linearity and high sensitivity and measurement accuracy and it can meet the requirement of power system.


2012 ◽  
Vol 02 (04) ◽  
pp. 172-176 ◽  
Author(s):  
Zhengping Wang ◽  
Yuekun Wang ◽  
Shuai Sun

2021 ◽  
Vol 1871 (1) ◽  
pp. 012012
Author(s):  
Ke Sun ◽  
Gangjin Ye ◽  
Xuan Yang ◽  
Hua Weng ◽  
Xiran Wang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1792
Author(s):  
Bingbing Dong ◽  
Yu Gu ◽  
Changsheng Gao ◽  
Zhu Zhang ◽  
Tao Wen ◽  
...  

In recent years, the new type design of current transformer with bushing structure has been widely used in the distribution network system due to its advantages of miniaturization, high mechanical strength, maintenance-free, safety and environmental protection. The internal temperature field distribution is an important characteristic parameter to characterize the thermal insulation and aging performance of the transformer, and the internal temperature field distribution is mainly derived from the joule heat generated by the primary side guide rod after flowing through the current. Since the electric environment is a transient field and the thermal environment changes slowly with time as a steady field under the actual conditions, it is more complex and necessary to study the electrothermal coupling field of current transformer (CT). In this paper, a 3D simulation model of a new type design of current transformer for distribution network based on electric-thermal coupling is established by using finite element method (FEM) software. Considering that the actual thermal conduction process of CT is mainly by conduction, convection and radiation, three different kinds of boundary conditions such as solid heat transfer boundary condition, heat convection boundary condition and surface radiation boundary condition are applied to the CT. Through the model created above, the temperature rise process and the distribution characteristics of temperature gradient of the inner conductor under different current, different ambient temperatures and different core diameters conditions are studied. Meanwhile, the hottest temperature and the maximum temperature gradient difference are calculated. According to this, the position of weak insulation of the transformer is determined. The research results can provide a reference for the factory production of new type design of current transformer.


Author(s):  
Lu Zhang Lu Zhang ◽  
Wei Tang Wei Tang ◽  
Jun Liang Jun Liang ◽  
Gen Li Gen Li ◽  
Yongxiang Cai Yongxiang Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document