rogowski coils
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 15)

H-INDEX

16
(FIVE YEARS 2)

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 397
Author(s):  
Alessandro Mingotti ◽  
Federica Costa ◽  
Lorenzo Peretto ◽  
Roberto Tinarelli

Power quality evaluation is the process of assessing the actual power network parameters with respect to the ideal conditions. However, several new assets and devices among the grid include mining the voltage and current quality. For example, the power converters needed for renewable energy sources’ connection to the grid, electric vehicles, etc., are some of the main sources of disturbances that inject high-frequency components into the grid. Consequently, instrument transformers (ITs) should be capable of measuring distorted currents and voltages with the same level of accuracy guaranteed for the ideal frequency (50–60 Hz). This is not a simple task if one considers that several other influence quantities endlessly act on the ITs. To this purpose, considering the lack of a standard, this work presents a measurement setup and specific tests for testing a commonly used type of low-power current transformer, the Rogowski coil (RC). In particular, the accuracy performance (ratio error and phase displacement) of the RCs was evaluated when measuring distorted signals while other influence quantities affected the RCs. Such quantities included positioning, burden, and magnetic field. The results indicate which quantities (or combination of them) have the greatest effect on the RC’s accuracy performance.


2022 ◽  
Vol 42 (2) ◽  
pp. 439-449
Author(s):  
Nehmdoh A. Sabiha ◽  
Hend I. Alkhammash
Keyword(s):  

2021 ◽  
Vol 10 (1) ◽  
pp. 16
Author(s):  
Rudolf Ribeiro Riehl ◽  
Bruno Albuquerque de Castro ◽  
José Renato Castro Pompéia Fraga ◽  
Victor Puccia ◽  
Guilherme Beraldi Lucas ◽  
...  

Science and industry have sought to develop systems aiming to avoid total failures in power transformers since these machines can be working under overloads, moisture, mechanical and thermal stresses, among others. These non-conformities can promote the degradation of the insulation system and lead the transformer to total failure. In the incipient stages of these faults, it is common to detect Full Discharges (FDs), which are short circuits between degraded coils. Therefore, several techniques were developed to perform FD diagnosis using UHF, acoustics, and current sensors. In this scenario, this article presents a mathematical model for Rogowski coils and compares two different types of cores: Ferrite and Teflon. For this purpose, FDs were induced in an oil-filled transformer. The sensitivity and frequency response of the Rogowski coils were compared. This analysis was achieved using the Power Spectrum Density (PSD) and the energy of the acquired signals. Additionally, the Short-Time Fourier Transform (STFT) was applied to detect repetitive discharges. The results indicated that the Ferrite core increases the sensitivity by 50 times in the frequency band between 0 and 1 MHz. However, the Teflon core showed higher sensitivity between 5 and 10 MHz.


2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Guilherme Beraldi Lucas ◽  
Bruno Albuquerque de Castro ◽  
Paulo José Amaral Serni ◽  
Rudolf Ribeiro Riehl ◽  
André Luiz Andreoli

Three-Phase Induction Motors (TIMs) are widely applied in industries. Therefore, there is a need to reduce operational and maintenance costs since their stoppages can impair production lines and lead to financial losses. Among all the TIM components, bearings are crucial in the machine operation once they couple rotor to the motor frame. Furthermore, they are constantly subjected to friction and mechanical wearing. Consequently, they represent around 41% of the motor fault, according to IEEE. In this context, several studies have sought to develop monitoring systems based on different types of sensors. Therefore, considering the high demand, this article aims to present the state of the art of the past five years concerning the sensing techniques based on current, vibration, and infra-red analysis, which are characterized as promising tools to perform bearing fault detection. The current and vibration analysis are powerful tools to assess damages in the inner race, outer race, cages, and rolling elements of the bearings. These sensing techniques use current sensors like hall effect-based, Rogowski coils, and current transformers, or vibration sensors such as accelerometers. The effectiveness of these techniques is due to the previously developed models, which relate the current and vibration frequencies to the origin of the fault. Therefore, this article also presents the bearing fault mathematical modeling for these techniques. The infra-red technique is based on heat emission, and several image processing techniques were developed to optimize bearing fault detection, which is presented in this review. Finally, this work is a contribution to pushing the frontiers of the bearing fault diagnosis area.


2021 ◽  
Author(s):  
Alessandro Mingotti ◽  
Federica Costa ◽  
Lorenzo Peretto ◽  
Roberto Tinarelli

2020 ◽  
Vol 20 (17) ◽  
pp. 9910-9918
Author(s):  
Xiaoyu Liu ◽  
Hui Huang ◽  
Yanan Dai

2020 ◽  
Vol 86 (4) ◽  
Author(s):  
F. Coto-Vílchez ◽  
V. I. Vargas ◽  
R. Solano-Piedra ◽  
M. A. Rojas-Quesada ◽  
L. A. Araya-Solano ◽  
...  

This work presents updates in the diagnostics systems, magnetohydrodynamics (MHD) calculations and simulations of microwave heating scenarios of the small modular Stellarator of Costa Rica 1 (SCR-1). Similarly, the design of a flexible bolometer and magnetic diagnostics (a set of Mirnov coils, Rogowski coils and two diamagnetic loops) are introduced. Furthermore, new MHD equilibrium calculations for the plasma of the SCR-1 device were performed using the VMEC code including the poloidal cross-section of the magnetic flux surfaces at different toroidal positions, profiles of the rotational transform, magnetic well, magnetic shear and total magnetic field norm. Charged particle orbits in vacuum magnetic field were computed by the magnetic field solver BS-SOLCTRA (Vargas et al. In 27th IAEA Fusion Energy Conference (FEC 2018), 2018. IAEA). A visualization framework was implemented using Paraview (Solano-Piedra et al. In 23rd IAEA Technical Meeting on the Research Using Small Fusion Devices (23rd TM RUSFD), 2017) and compared with magnetic mapping results (Coto-Vílchez et al. In 16th Latin American Workshop on Plasma Physics (LAWPP), 2017, pp. 43–46). Additionally, simulations of microwave heating scenarios were performed by the IPF-FDMC full-wave code. These simulations calculate the conversion of the ordinary waves to extraordinary waves and allow us to identify the location where the conversion takes place. Finally, the microwave heating scenarios for the $330^{\circ }$ toroidal position are presented. The microwave heating scenarios showed that the O–X–B mode conversion is around 12–14 %. It was possible to identify the spatial zone where the conversion takes place (upper hybrid frequency).


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3359 ◽  
Author(s):  
Alessandro Mingotti ◽  
Lorenzo Peretto ◽  
Roberto Tinarelli

With the spread of new Low-Power Instrument Transformers (LPITs), it is fundamental to provide models and characterization procedures to estimate and even predict the LPITs’ behavior. In fact, distribution system operators and designers of network models are looking for all forms of information which may help the management and the control of power networks. For this purpose, the paper wants to contribute to the scientific community presenting a smart characterization procedure which easily provides sufficient information to predict the output signal of a Low-Power Current Transformer (LPCT), the Rogowski coil. The presented procedure is based on a synthetized signal applied to the Rogowski coil. Afterwards, the validity of the procedure is assessed within the Matlab environment and then by applying it on three off-the-shelf Rogowski coils. Simulations and experimental tests and results involving a variety of distorted signals in the power quality frequency range and by adopting a quite simple measurement setup demonstrated the effectiveness and the capability of the procedure to correctly estimate the output of the tested device.


2020 ◽  
Vol 5 (6) ◽  
pp. 626-631
Author(s):  
John Paul I. Iloh

Proper metering of electricity consumption is the optimal way for effectively recovering revenues for power supplied to the consumers by the distribution companies (DISCOs). In Nigeria, the situation is quite problematic due to inadequate metering of the consumers. As a result, huge amount of revenues due to the DISCOs are left uncollected leaving the DISCOs to resort to estimated billing system. To solve this problem, this paper proposes a locally made digital energy meter built from locally available materials in Nigeria. Specifically, this work proposes to use an inexpensive rogowski coil wound from made-in-Nigeria wire on an improvised air core material as the current sensing element to be used in the meter. Two rogowski coil samples wound from SWG 36 and SWG 25 wires having resistances of 50ohm and 1.3 Ohms respectively were subjected to repeated experimental tests in order to study their characteristic behavior under varying load current scenarios. The results obtained were used to characterize the coils behaviors by using the basic fitting tool in MATLAB graphing window to generate the optimal equation representing the coils’ behaviors.  The equations so obtained are intended to be used to program the microcontroller for implementation of the Digital Energy Meter algorithm adopted in the proposed design. Results from the experiment showed that the coil with lower resistance exhibited better linear response while the coil with higher resistance was better optimized by quadratic and cubic polynomials. These findings serve as design guide for local fabrication of the rogowski coils to be used in the proposed digital energy meter being developed for the Nigerian power market.


Sign in / Sign up

Export Citation Format

Share Document